
Σ� Reference Manual

Systemic Intelligence

Abstract: This manual presents Σ�, an object-oriented modeling language
dedicated to the description and the simulation of the dynamics of complex
technical and socio-technical systems.
Σ� relies onto two pillars: first, the decomposition of the system into a hier-
archy of subsystems, the state of each subsytems being described by means of
variables. Second, the description of activities performed by subsystems and
modifying their states. Although apparently simple, this way of describing
complex systems dynamics turns out to be extremely powerful. Discrete event
simulation performed on Σ� models make it possible to play what-if scenarios,
to assess key performance indicators, and to apply optimization techniques.
Σ� is at the core of the WorldLab technology that aims at developing systemic
digital twins of complex systems, thereby helping decision-makers to manage
their strategic assets.

This manual introduces Σ� concepts and describes the syntax and the seman-

tics of Σ� constructs. It provides a reference for WorldLab users. Some of the

constructs described here are not yet implemented in the Σ� tool suite. We

shall mention explicitly when it is the case.

Author(s) Antoine Rauzy
Reference SIG-RM-2023-003
Version 1.5.6
Date September 2023

Copyright (c) 2023 Systemic Intelligence. Documentation contributions included herein
are the copyrights of Systemic Intelligence. This work is licensed under the Creative Com-
mons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0) License. To view a copy of
this license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to
Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

http://creativecommons.org/licenses/by/4.0/

Table of Contents

1 Introduction 6

2 Getting Started 7
2.1 Σ� Ontology . 7
2.2 Systems and Variables . 8
2.3 Redeclarations . 8
2.4 Activities . 9
2.5 Executions . 13
2.6 Terminology and Additional Syntactic Constructs 13

2.6.1 Terminology . 13
2.6.2 Identifiers and Paths . 14
2.6.3 Comments . 14
2.6.4 Units . 14

3 Variables 14
3.1 Basic Types and Domains . 14
3.2 State and Temporary Variables . 16
3.3 Constants and Parameters . 17

3.3.1 Parameters . 17
3.3.2 Constants . 17

3.4 Observers . 17
3.5 Indicators . 18

4 Expressions 19
4.1 Signatures . 20
4.2 Constants . 21
4.3 References to Variables and Parameters . 21
4.4 Boolean Expressions . 23
4.5 Inequalities . 23
4.6 Arithmetic Expressions . 24
4.7 Built-in Functions . 25

4.7.1 Usual mathematical operations . 25
4.7.2 Trigonometric Functions . 26
4.7.3 Casts . 26

4.8 Conditional Expressions . 26
4.9 Probability Distributions and Random Deviates 27

4.9.1 Parametric Probability Distributions . 27
4.9.2 Parametric Random Deviates . 28
4.9.3 Empirical Distributions and Deviates . 29

4.10 Time Primitives . 31

5 Instructions 31
5.1 Skip . 32
5.2 Assignment . 32
5.3 If-Then-Else . 32
5.4 While . 32
5.5 Return . 33

5.6 Blocks of Instructions . 33

6 S2ML Constructs 33
6.1 Cloning . 33
6.2 Classes and Instances . 35
6.3 Polymorphism and Inheritance . 36
6.4 Attribute (re)Declaration . 37
6.5 Splitting the Model into Several Files . 37

7 More on Activities 37
7.1 Vocabulary . 37
7.2 Triggers . 38

7.2.1 Triggers without Variables . 38
7.2.2 Repetitive Starts . 38
7.2.3 A Zealous Agent . 39

7.3 Conflicts . 39
7.3.1 Alice versus Bob . 39
7.3.2 Multiple Instances . 41

7.4 Action at Start versus Duration . 42

8 More on Variables and Expressions 42
8.1 The Three Categories of Variables . 43

8.1.1 Vocabulary . 43
8.1.2 Example . 43
8.1.3 Execution . 44

8.2 Classes and Paths . 45

References 46

Index 47

A Grammar 49
A.1 Extended Backus-Naur Form . 49
A.2 Models and Systems . 49
A.3 Variables . 50

A.3.1 Basic Types and Domains . 50
A.3.2 State and Temporary Variables . 50
A.3.3 Constants and Parameters . 50
A.3.4 Observers . 50
A.3.5 Indicators . 51

A.4 Expressions . 51
A.4.1 Constants . 52
A.4.2 Identifiers and Paths . 52
A.4.3 Boolean Expressions . 52
A.4.4 Inequalities . 52
A.4.5 Arithmetic Operations . 52
A.4.6 Builtin Expressions . 52
A.4.7 Count Expressions . 53
A.4.8 Conditional Expressions . 53
A.4.9 Probability Distribution and Random Deviate 53

4

A.4.10 Time Primitives . 54
A.5 Instructions . 54
A.6 Activities . 54
A.7 S2ML Constructs . 55

5

1 Introduction

Our world runs on increasingly complex technical systems. Engineers face a critical challenge
in designing, managing, and optimizing these systems. One of the key issues is that traditional
development methods, based on local optimization and silo-ed engineering disciplines do not
suffice anymore (deWeck, Roos, and Magee, 2011). One needs a holistic perspective on sys-
tems and their environment, encompassing technical, organizational, economical, environmental
and regulatory opportunities and constraints. Systems engineering aims at providing concepts,
methods and tools to support such an approach (Walden et al., 2015).

To tackle the complexity of systems, engineers more and more on computer models and
simulations. By designing these digital twins of the systems, they pursue two main objectives:
first, to better understand the systems and to ensure that stakeholders share a common under-
standing of the problems at stake; second, to assess key performance indicators without having
to perform physical experiments, which would be too costly, or simply impossible.

Models are already pervasive in most of the engineering disciplines like mechanical, electrical,
or reliability engineering. As of today, their introduction into systems engineering is still an on
going process and the subject of active researches and developments. Modeling technologies to
be applied are still debated. One of the main difficulties is to capture the key features of the
system under study while staying at the suitable level of abstraction. Another difficulty is to
integrate the heterogeneous characteristics of systems in the models.

The Σ� modeling framework aims at providing a generic, mathematically sound and compu-
tationally efficient, solution to these difficulties. It relies on two pillars. First, one describes the
architecture of the system under study, i.e. the system is decomposed into subsystems. These
subsystems can be themselves further decomposed until the suitable granularity is reached. The
state of each subsystem is described by means of discrete (symbolic) and continuous variables.
Second, one describes activities performed by subsystems. Activities are guarded, i.e. they are
performed when a certain condition on the state of the system is satisfied. They take time. This
time may be deterministic or stochastic. Finally, they modify twice the state of the system.
First at their beginning, to book the resources they need. Second at their completion, to release
these resources and to describe their effect on the state of the system. Activities can not only
modify the values of variables, but also create, move and delete components.

The Σ� modeling framework enters thus into the wide category of discrete event systems
(Cassandras and Lafortune, 2008). As a matter of facts, it embeds a good deal of ideas and
algorithms developed for the AltaRica 3.0 modeling language (Batteux, Prosvirnova, and Rauzy,
2019). The Σ� language belongs to the S2ML+X family (Batteux, Prosvirnova, and Rauzy,
2018; Rauzy and Haskins, 2019), i.e. it results from the combination of mathematical framework,
here hierarchical actor networks (the X) with a versatile set of object- and prototype-oriented
primitives to structure models (S2ML). The Σ� modeling framework is agnostic, i.e. not ded-
icated to any particular application domain. Moreover, conversely to most of discrete event
systems, Σ� makes it possible to describe seamlessly the dynamic evolution of the architecture
of the system.

Once a Σ� model designed, it is possible to perform Monte-Carlo simulations on this model
and thereby to assess key performance indicators. Beyond, it is possible to play various what-if
scenarios and to apply optimization techniques so to improve the performance of the system.
The Σ� modeling framework provides thus an essential brick in the construction of systemic
digital twins of complex digital systems.

This document aims at providing a guided tour of the Σ� modeling framework and at
illustrating its constructs by means of examples. It provides also a reference for WorldLab
users.

6

Organization of the manual

The remainder of this manual is organized as follows.

– Section 2 introduces the Σ� modeling framework.

– Section 3 presents the role and the declaration of Σ� variables, parameters, observers and
indicators.

– Section 4 describes Σ� expressions.

– Section 5 describes the set of instructions of Σ�.

– Section 6 describes S2ML constructs implemented in Σ�.

– Section 7 provides more insight into how activities work.

– Section 8 provides more insight about variables and expressions.

In addition to the above sections, it contains an appendix.

– Appendix A gives the grammar of Σ� in extended Bacckus-Naur form (EBNF).

2 Getting Started

2.1 Σ� Ontology

As explained in the introduction, in the Σ� approach, the system under study is decomposed
into subsystems, which can be themselves further decomposed. In a word, each and every part
of system is viewed as a system. This translates directly into the Σ� language that consists
essentially in three types of components:

– Systems, that are containers for components;

– Variables, that are value holders and that are used to describe the state of the system;

– Activities, that are mechanisms by which the state of system and possibly its structure
are modified.

As an illustration, consider a small production company, the Producer. The Producer
produces products that are consumed by the consumer Consumer. More exactly, the Consumer
orders regularly a quantity of products. The Producer produces these products and delivers
them to the Consumer that can then consumes them. To produce products, the Producer
needs raw materials. The raw materials are produced by the Supplier, which then delivers
them to the Producer.

Figure 1 shows the system breakdown structure (the hierarchical decomposition) of this
production system. It consists of the World and three subsystems: Supplier, Producer and
Consumer.

Each system owns stocks, i.e. certain quantities of raw materials, products and orders.
The above figure shows these stocks that concretely encoded as numerical variables, integers or
floating point numbers.

The state of the system at a given time is thus described by the hierarchy on the one hand,
and by the values of the stocks on the other hand. For the sake of simplicity, we shall first

7

Figure 1: Producer system breakdown structure

consider that the hierarchy of our system stay the same throughout its life-cycle. Its state is
thus described essentially by the values of stocks.

Now, we must describe how the system changes of state. In the Σ� framework, this is
achieved by describing activities performed by each actor. Namely:

– The Supplier renews periodically its stock of raw materials.

– The Producer gets periodically some raw materials from the Supplier.

– The Consumer orders periodically products to the Producer.

– The Producer produces periodically products using its stock of raw materials.

– The Producer delivers periodically products to the Consumer according to its stock of
demands and to its stock products.

– Finally, the Consumer consumes periodically part of its stock of products.

All these activities take place under certain conditions, have a certain duration, and have a
certain effect on stocks of one or more actors, i.e. subsystem.

2.2 Systems and Variables

According to the ontology described in the previous section, a Σ� model is thus essentially a
hierarchy of systems where each system may hold some variables and perform some activities.

Figure 2 shows the skeleton of a Σ� model that implements the production system, de-
composed as shown in Figure 1. We assume here that all stocks are represented by means of
integers.

Keywords are printed out in bold and blue.
The system World declares three sub-systems: Supplier, Producer and Consumer.

In turn, the subsystem Supplier declares an integer variable rawMaterial, the subsystem
Producer declares three integer variables order, rawMaterial and product, and finally
the subsystem Consumer declares two integer variables order and product. Initially, all the
variables take the value 0, which is indicated by their attribute init.

2.3 Redeclarations

In the above example, the hierarchy of systems is shallow: two levels, three if we count variables.
Models of complex systems may involve much deeper hierarchies. It would be tedious to nest
descriptions of inner levels into a single block, not to speak about the source of errors of having
the closing end of a system description coming thousands of lines below the opening system.

8

system World
system Supplier

int rawMaterial(init = 0);
end
system Producer

int order(init = 0);
int rawMaterial(init = 0);
int product(init = 0);

end
system Consumer

int order(init = 0);
int product(init = 0);

end
end

Figure 2: Skeleton of a Σ� model that represents the production system.

Redeclarations are a means to avoid nested descriptions. A Σ� model can actually be seen
as a script that creates the actual model. The model as assessed is obtained by automated
transformations from the model as design. These transformations preserve indeed the semantics.

In our example, the system World could be declared first with its three subsystems, but
letting the declarations of the latter incomplete. The subsystem Supplier, Producer and
Consumer can be redeclared latter to complete their description.

Figure 3 shows a code, equivalent to the one given in Figure 2 that applies this idea.
Ellipses ... have no specific meaning. Rather they are an (optional) indication that the

system will be further developed.

2.4 Activities

As explained above, in Σ�, the dynamics of systems is described via the notion of activity. An
activity is characterized by the following elements.

– A triggering condition, also called a guard, that is an instruction (a calculation) returning
true when the activity must be started and false otherwise. The activity is started as soon
as its triggering condition is satisfied.

– An action at start , i.e. an instruction that is executed when the activity starts. This
instruction books the resources required by the activity. It may also be used to ensure
that the same activity cannot be started again before the activity is completed.

– An action at completion, i.e. an instruction that is executed when the activity is completed.
This action changes the state of the system to reflect the effects of the activity.

– A duration, i.e. an instruction that is executed when the activity starts to determine how
long it will take to complete the activity.

We shall see later that activities can be also interrupted.
As a first illustration, consider the activity of the Supplier that consists in renewing its

stock of raw material, i.e. incrementing it by a certain amount, say 100. For now, we shall
consider that variables have no unit. Assume that this activity is performed if the stock is
not bigger than 1000 (as the supplier does not want to accumulate unsold materials). Assume
moreover that this activity takes 30 days (or time units) to be completed.

9

system World
system Supplier ... end
system Producer ... end
system Consumer ... end

end

system World.Supplier
int rawMaterial(init = 0);

end

system World.Producer
int order(init = 0);
int rawMaterial(init = 0);
int product(init = 0);

end

system World.Consumer
int product(init = 0);

end

Figure 3: Skeleton of a Σ� model with redeclarations that represents the production system.

Figure 4 gives a possible code to implement the RenewRawMaterialStock activity of the
Supplier.

This code implements the four elements of the activity RenewRawMaterialStock, intro-
duced respectively by the keywords trigger, start, completion and duration.

The triggering condition is when the stock of raw materials goes below 1000. There is
however a second condition: that the Supplier is not already in the process of renewing its
stock, hence the introduction of the Boolean variable renewing. Initially, this variable takes
the value false. It takes the value true while the activity is on going and takes back the value
false once the latter is completed.

When the triggering condition of an activity is true, one says that this activity is enabled .
Initially, the stock of raw material of the Supplier is null and the variable renewing is false.
Consequently, the activity RenewRawMaterialStock is enabled.

The instruction at start of the activity books the resources necessary to perform it. Namely,
it sets the variable renewing to true.

The instruction at completion is thus a block (a sequence) of two instructions: an instruction
that sets back renewing to false (to free the resource) and an instruction that increments
the stock rawMaterial by 100. Finally, the duration returns simply 30, as expected.

As we shall see, in Σ�, instructions can implement more or less complex calculation proce-
dures. They may involve the call of functions and they may access to externally stored data.

As a second illustration, consider the activity RenewRawMaterialStock but this time of
the Producer. This activity is similar to the one of the Supplier except that:

– The decision to renew the stock of raw material is taken based not only on the current
stock but also on stock of orders.

– Moreover, the Producer can renew its stock of raw materials only if the Supplier is
able to deliver these materials.

– The quantity of raw material acquired by the Producer can be constant or depending on

10

system World.Supplier
int rawMaterial(init = 0);
bool renewing(init = false);

end

activity World.Supplier.RenewRawMaterialStock
trigger:

return rawMaterial<=1000 and not renewing;
start:

renewing = true;
completion: {

renewing = false;
rawMaterial += 100;
}

duration:
return 30;

end

Figure 4: Σ� code for the activity RenewRawMaterialStock of the Supplier.

the needs. Here, we shall assume for the sake of simplicity that the Producer buys raw
materials by chunk of 20 units.

– We shall assume that it takes 10 days for the Producer to buy a chunk of raw material
and to be delivered.

Figure 5 shows a possible code to implement the RenewRawMaterialStock activity of the
Producer.

This code is slightly more complex than the previous one.
First, the calculation of the triggering condition involves the intermediate variable required-

Quantity (of raw material). This variable is local. It exists only during the calculation of the
triggering condition. Its value is calculated based on the stock of order and a security margin
the Producer takes, here 15.

More importantly, both the calculation of the value of the triggering condition and of the
instruction at start involve the stock of raw material of the Supplier, i.e. the variable
rawMaterial of the latter. Consequently, one needs a means to refer to this variable within
the activity RenewRawMaterialStock of the Producer.

Σ� provides the notion of path to do so. This notion comes actually from S2ML (Batteux,
Prosvirnova, and Rauzy, 2018). A path is an absolute or a relative reference to a modeling
element.

In the body of the system Supplier, the path rawMaterial refers to the variable raw-
Material of the Supplier.

To refer to this variable in the system World, one can use the dot notation. Hence, in the sys-
tem World, Supplier.rawMaterial refers to the variable rawMaterial of the Supplier.
Similarly, Producer.rawMaterial refers to the variable rawMaterial of the Producer.

Now, to refer to the variable rawMaterial of the Supplier in the system Producer,
one has two choices:

– Using an absolute path, here main.Supplier.rawMaterial. The keyword main refers
to the top most system of the hierarchy, here World. Consequently, main.Supplier-
.rawMaterial refers to the variable rawMaterial of the subsystem Supplier of the
system World.

11

system World.Producer
int order(init = 0);
int rawMaterial(init = 0);
int product(init = 0);
bool renewing(init = false);

end

activity World.Producer.RenewRawMaterialStock
trigger: {

int requiredQuantity;
requiredQuantity = order*5 + 15;
return main.Supplier.rawMaterial>=20

and rawMaterial<=requiredQuantity
and not renewing;

}
start: {

renewing = true;
main.Supplier.rawMaterial -= 20;
}

completion: {
renewing = false;
rawMaterial += 20;
}

duration:
return 10;

end

Figure 5: Σ� code for the activity RenewRawMaterialStock of the Producer.

12

– Using a relative path, here owner.Supplier.rawMaterial. The keyword main refers
to the parent system of the current system. Consequently, owner.Supplier.rawMate-
rial refers to the variable rawMaterial of the subsystem Supplier of the parent
system of the system Producer, i.e. the system World.

The same kind of description can be provided from each activity involved in the description
of our use case.

2.5 Executions

The semantics of a Σ� model is defined as the set of all possible executions of that model,
starting from the initial state.

In our example, in the initial states, all the stocks are empty. Two activities are enabled:
the activity RenewRawMaterialStock of the Supplier and the activity OrderProduct of
the Consumer. Assume the latter takes 5 days and consists of an order of 10 products at a
time. Assume moreover that the Consumer orders products until it has ordered 20 products.

These two activities start at time t = 0. Then, at time t = 5, the second one is completed.
As a result, the variables order of both the Producer and the Consumer are increased by
10.

As the stock of orders of the Consumer is still less than 20. Consequently, the Consumer
launches again an order. At time t = 5 + 5 = 10, this activity is completed. Now, both
variables order of both the Producer and the Consumer have the value 20. The activity
OrderProduct of the Consumer is thus no longer enabled.

As the completion activity RenewRawMaterialStock of the Supplier is scheduled at
time 30, nothing happen til this date. A time t = 30, the activity is completed, the stock of raw
materials of the Supplier (which was empty) is increased by 100. This makes it possible for
the producer to launch its own activity RenewRawMaterialStock.

At time t = 30+10 = 40, this activity is completed. 10 units of raw materials are transferred
from the stock of the Supplier to the stock of the Producer. The latter can thus start the
production as it is not currently producing and it has a non empty stocks of orders and of raw
materials.

And so on.
As both results of activities and their durations are all deterministic, there is in our example

only one possible execution. When stochastic results or durations are introduced, there are
usually infinitely many possible executions, as we shall see in Section ??.

2.6 Terminology and Additional Syntactic Constructs

2.6.1 Terminology

Σ� is an object-oriented language. It is thus worth to use the terminology of object-oriented
theory to refer to its constructs.

With that respect, Σ� systems are prototypes, i.e. objects with a unique occurrence in
the model. They are also containers for declarations of variables, activities and other systems.
When the system S contains the variable V , the activity A or the subsystem T , one says that
S composes V , A or T . Note that, Σ� makes it possible to declare a subsystemT in the system
T and then move it to another part of the hierarchy. It makes also possible to create and delete
subsystems. Consequently, the composition relation is dynamic.

Systems declaring activities are called actors. Activities can be seen, at least to some extent,
as the methods of the system that declares them.

13

2.6.2 Identifiers and Paths

Σ� identifiers for variables, systems, activities. . . are those of most of programming and modeling
languages: an identifier starts with a letter or an underscore, followed by any number of letters,
digits and underscores. E.g. oreStock, working, road66.

Paths are basically identifiers separated with dots. MiningSupportVessel.oreStock,
Plant.SourceConnector.Line1. Paths can also contain references to the parent system,
using the keyword owner, or to the top system of the hierarchy, using the keyword main. E.g.
owner.Train1.Unit1.In, main.Train1.Unit1.In.

2.6.3 Comments

As in any programming or modeling language, it is possible to introduce comments in Σ�models.
Basically, Σ� are the same as those of C, C++, and. . . AltaRica 3.0.

There are two types of comments.
Single line comments start with a double slash // and spread until the end of the line. E.g.

duration:
return 10; // To be checked

Multiline comments start with /* and finish with */. E.g.

/*
* Producer/Consumer model

*/

2.6.4 Units

The experience shows that it is often very convenient to indicate the unit of stocks (cubic meters,
tons, euros, days. . .). The current version of the Σ� makes it possible to do so via the attribute
unit. E.g.

float rawMaterial(init = 0, unit = "t");

The convention is to use the MKS system. However, in their current version, Σ� assessment
tools perform no verification. Nevertheless, it is recommended to follow the convention, for the
sake of upward compatibility.

3 Variables

As we have seen in the previous section, variables are used to describe the state of the system
under study. There are actually four types of variables in Σ�: variables strictly speaking,
parameters, observers and indicators. This section presents their different roles, the way they
are declared and used.

Throughout this section, we shall use a revisited version of the code we already looked at in
the previous section. The corresponding code is given in Figure 6.

3.1 Basic Types and Domains

Variables are value holders. Σ� is a strongly typed language: the value hold by a variable is
given by a type when the variable is declared, and does not change while it is used.

The type of a variable is either a basic type or an user defined domain.
Basic types are the following.

14

domain State {STANDBY, WORKING}

system World.Producer
int order(init = 0);
int rawMaterial(init = 0);
int product(init = 0);
State renewing(init = STANDBY);
parameter int renewedQuantity = 20;
parameter int renewingDuration = 10;
observer RawMaterial = rawMaterial;

end

activity World.Producer.RenewRawMaterialStock
trigger: {

int requiredQuantity;
requiredQuantity = order*5 + 15;
return main.Supplier.rawMaterial>=renewedQuantity

and rawMaterial<=requiredQuantity
and renewing==STANDBY;

}
start: {

renewing = WORKING;
main.Supplier.rawMaterial -= renewedQuantity;
}

completion: {
renewing = STANDBY;
rawMaterial += renewedQuantity;
}

duration:
return renewingDuration;

end

Figure 6: Revisited Σ� code for the activity RenewRawMaterialStock of the Producer.

15

– bool for Boolean values;

– int for integers;

– float for floating-point numbers;

– id for identifiers;

– str for strings.

A user defined domain is a finite, usually small, set of symbolic constants. Domains are
declared as follows (see also Figure 6).

domain State {STANDBY, WORKING}

The keyword domain introduces the declaration of a domain. It is followed by the name of a
domain, here State, and the set of symbolic constants belonging to the domain, here STANDBY,
and WORKING.

In the above declaration, we wrote symbolic constants using capital letters. Although this
is not required by the Σ� grammar, this is a common usage that makes possible to distinguish
symbolic constants from variables.

Note also that a symbolic constant can belong to several domains.

3.2 State and Temporary Variables

As already said, (regular) variables are used to describe the state of the system. They are
declared (or redeclared) withing systems. E.g.

int rawMaterial(init = 0, unit = "t");
State renewing(init = STANDBY);

First comes the type (basic type or domain) of the variable, here int. Then its identifier, here
rawMaterial. Then an optional list of attributes surrounded with parentheses and separated
with commas. The declaration ends with a semicolon. The declaration of the variable renewing
involves the domain State.

Attributes are pairs (name, value) separated with an equal sign. The value of an attribute
is an expression, see Section 4.

Variables takes two attributes:

– The attribute init, which gives the initial value of the variable.

– The attribute unit, which gives the unit of the variable (see Section 2.6.4).

The attribute init is mandatory when the variable is a state variable, i.e. it is declared in
a system. It is optional (and preferably not given) when the variable is a temporary variable,
i.e. declared, for the sake of convenience, within an activity. In the code given in Figure 6, the
variables order, rawMaterial, product and renewing are state variables, while variable
requiredQuantity is a temporary variable.

The attribute unit is always optional.
Attributes of variables can be redeclared, possibly in a different system that they were

initially declared (therefore using a path rather an identifier in the declaration). E.g.

int main.Producer.rawMaterial(init = 42, unit = "t");

16

3.3 Constants and Parameters

3.3.1 Parameters

Parameters can be seen as variables are set once for all. They are used instead of constants, so
to document the models and to make their modification easier. In the code given in Figure 6,
the parameters renewedQuantity and renewingDuration are used for this very purpose.

The declaration of parameters is as follows.

parameter int renewedQuantity(unit = "ton") = 20;
parameter int renewingDuration(unit = "day") = 10;

First comes the keyword parameter, then the type of the parameter, then its identifier,
then optionally some attributes, and finally its value (after an equal sign), which is an expression.
The declaration ends with a semicolon.

The only attribute of interest for parameters is their units.
Values of parameters can be redeclared, possibly in a different system that they were initially

declared (therefore using a path rather an identifier in the declaration). E.g.

int main.Producer.renewingDuration = 12;

Another important interest of parameters is that it is possible to change their value at the
beginning of a simulation (either interactive or stochastic). The model stays otherwise the same.
Consequently, there is no need to recompile it.

3.3.2 Constants

Constants are just like parameters, except that they cannot be changed at the beginning of a
simulation.

The declaration of constants is as follows.

constant float G (unit = "m/s2") = 9.81;

3.4 Observers

The main objective of Σ� modeling is to assess performance indicators. Performance indicators
are numerical quantities. In Σ�, they are defined via observers.

Observers are like real valued variables, except that they are defined by means of a single
assignment and they cannot be used in expressions. Observers serve as an interface between the
model and the tool(s) making statistics on executions of the model.

For each observer, the following quantities are continuously updated along an execution:

– Its current value;

– Its minimum, maximum and mean values since the beginning of the current execution;

– The integral of its value since the beginning of the current execution;

– The first date at which it changed of value after the beginning of the execution;

– The number of times it changed of value since the beginning of the execution.

17

Changes of values are considered only if they last for a strictly positive time. As an illustra-
tion, assume we want to follow the level of the stock of raw material of the Producer. Then, we
can declare an observer as illustrated in Figure 6.

As for parameters, it is possible to associate a unit with observers. E.g.
The declaration of observers is as follows.

observer RawMaterial(unit = "ton") = rawMaterial;

The observer RawMaterial makes it possible to follow the evolution of the stock of raw
material. Now, assume that we consider that the stock should normally be over 30 units or, to
put it differently that a problematic situation occurs when it is below this threshold. To known
whether such situation occurred since the beginning of the execution, it suffices to look at the
minimum value the observer took since then. Looking at this value is however insufficient to
know how much time we spent in a “dangerous” state. To get this information, we can declare
another observer, defined by a 0/1 expression, as follows.

observer LowLevelRawMaterial = if rawMaterial<=30 then 1 else 0;

By looking at the maximum value of lowLevelRawMaterial, we know whether we en-
countered the problematic situation at least once. Moreover, by multiplying the mean value of
the observer by the current date, we obtain the expected sojourn time in a problematic situation.

This example shows that observers as Σ� defines them give thus a significant amount of
information on quantities of interest. The experience with AltaRica 3.0 (Batteux, Prosvirnova,
and Rauzy, 2019) shows that all practical needs can be actually covered by this approach.

Interactive simulators make it possible to save the time series of the values of observers
in a CSV file at the end of the simulation, i.e. when the mission time is reached, see the
Σ Workshop� user manual for more details (Rauzy, 2023). This requires specifying the name
of the file by means of the attribute timeSeries when declaring the observer. It works as
follows.

observer RawMaterial(unit = "ton", timeSeries = "Results/rawMaterial.tsv
↪→ ") =
rawMaterial;

From there, the time series is automatically saved at the end of each interactive simulation.

3.5 Indicators

When performing Monte-Carlo simulations, statistical indicators are defined from observers.
Conversely to observers, that are continuously updated throughout executions, these indicators
are calculated at predefined dates, usually at the mission time and possibly some additional
intermediate dates. Due to memory usage and computation time considerations, it is preferable
not to make statistics on all quantities calculated for each observer. Usually, only one or two of
them are of actual interest. This is the reason why indicators are defined.

An indicator is essentially a pair made of an observer and the quantity one wants to make
statistics on.

Indicators are declared in a similar way as observers. Thanks to themodel-as-script principle,
it is possible to declare them separately from the core of the model. E.g.

system World.Producer
indicator probabilityTooLowStock(mean=true, standardDeviation=true)

↪→ = max(lowLevelRawMaterial);

18

Table 1: Attributes to specify the statistical measures to be calculated with indicators

Attribute Type Statistical measure

mean bool Mean

standardDeviation bool Standard-deviation

min bool Minimum

max bool Maximum

confidenceRange90 bool 90% confidence range

confidenceRange95 bool 95% confidence range

confidenceRange99 bool 99% confidence range

bins int Bins

shrinkFactor int Shrink factor of the bin table

indicator sojournTimeTooLowStock(mean=true, standardDeviation=true,
↪→ bins=10) = mean(lowLevelRawMaterial);

end

By making statistics on the maximum value of the observer lowLevelRawMaterial from
the beginning of the execution to the current date, one assesses the probability that the prob-
lematic situation occurred at least once.

By making statistics on its mean value, one assesses the sojourn time in such potentially
problematic situation. The following statistics can be made on each indicator and each date at
which this indicator must be calculated.

– Its minimum and maximum values;

– Its mean value, standard deviation, 90, 95 and 99 percents confidence interval.

– Quantiles and distributions.

The statistics to be made are specified by means of attributes, as shown above. Table 1 gives
these attributes, their types and their meanings.

Note that some indicators related to dates and numbers of changes of values of the observers
may be applicable on a restricted subset of executions, as the observer may keep the same value
throughout the whole execution. Statistics are exported into CSV files, so that they can be
easily worked out by in Spreadsheet tools such as Excel®or using scripting languages such as
Python.

Further explanations on statistics performed by stochastic simulation can be found in the
Σ Workshop� user’s manual (Rauzy, 2023).

4 Expressions

This section presents the syntax and the semantics of Σ� expressions. Their syntax is specified
using the extended Backus-Naur form (EBNF), see Appendix A. Their semantics is specified
using their signatures, see next section.

Σ� expressions belong to one of the following categories.

– Constants;

– References to variables and parameters;

19

– Boolean operations;

– Inequalities;

– Arithmetic expressions;

– Builtin expression;

– Conditional expressions;

– Probability distributions and random deviates;

– Time primitives.

The syntax of Σ� expressions is thus as follows.
The following production rule is the root of the EBNF grammar of Σ� expressions.

Expression ::=
VariableReference

| BooleanExpression
| Inequality
| ArithmeticExpression
| BuiltInExpression
| ConditionalExpression
| ProbabilityDistribution
| RandomDeviate
| TimePrimitive

Some expressions and instructions take as arguments expressions that return a Boolean. The
latter are either references to variables and parameters, Boolean expressions strictly speaking,
or inequalities. We call such expressions conditions.

VariableReference // if type bool
| BooleanExpression
| Inequality
| ConditionalExpression // if return type bool

The remainder of this section specifies expressions of each of these categories in turn. But
before doing so, we need to introduce signatures.

4.1 Signatures

Sigma provides a wide range of operators to construct expressions. Expressions are themselves
used in instructions, which are themselves used in triggers, instructions at start, instructions at
completion, and durations of activities.

Operators ranges from usual Boolean and arithmetic operators, to arithmetic builtins and
random deviates. Each operator takes a certain number of arguments. Each of these arguments
must have a certain basic type. The operator itself returns a value, that has also a certain basic
type.

Sigma basic types are the following.

– bool for Boolean values;

– int for integers;

– float for floating-point numbers;

20

– num which are either integers or floating-point numbers;

– id for identifiers (including symbolic constants);

– str for strings; and finally,

– any for any of the above types.

The signature or the type of an operator taking k arguments of respective types t1,. . . tk and
returning a value of type t is denoted t1 × · · · × tk → t.

For instance, the signature of the Boolean negation not is bool → bool, while the signature
of the division / is num× num → float (the division always return a floating point number).

When the operator takes any positive number of arguments of the same type a and returns
a value of type t, we shall denote its signature a+ → t.

For instance, the signature of the Boolean conjunction and is bool+ → bool, while the
signature of the multiplication is num+ → num. As usual, we shall admit implicitly that if
all arguments are integers, the result is also an integer, and that it is a floating-point number
otherwise.

Throughout the section, we shall thus specify signatures of operators.

4.2 Constants

Σ� implements usual constants of programming and modeling languages:

– The two Boolean constants false and true;

– Integers, e.g. 123;

– Floating point numbers, e.g. 0.456, 1.23e-4.

– Strings, i.e. any sequence of characters surrounded with double quotes, e.g. "This is
a string";

In addition, some identifiers are considered as symbolic constants, e.g. STANDBY.

4.3 References to Variables and Parameters

References to variables and parameters are identifiers or paths. E.g.

status==TODO and main.SelectStaff.status==COMPLETED

In the above expression, both status and main.SelectStaff.status are references to
variables. The type of a reference to a variable or a parameter is indeed the type of the referred
object.

The syntax of paths is as follows.

Identifier ::= [_A-Za-z][_A-Za-z0-9]+
Path ::=

Identifier
| Identifier ’.’ Path
| ’main’ ’.’ Path
| ’owner’ ’.’ Path

21

Figure 7: A production system

An identifier is thus a sequence of characters, digits and underscores starting with a letter
or an underscore. E.g. rawMaterial, production line 3. . .

A path is thus a sequence of identifiers separated with dots. Moreover, paths can involve the
two keywords main and owner. main main refers to the top system of the hierarchy. owner
main refers to the parent system in the hierarchy. Paths containing the keyword main are called
absolute paths. All other paths are relative paths.

As an illustration, consider the system pictured in Figure 7.
The system World composes (declares) two subsystems: Supplier and Producer. The

system Supplier composes the variable rawMaterial. The system Producer composes two
subsystems: Workshop and Administration. Finally, the system Workshop composes the
variable rawMaterial.

Anywhere in the model, we can access the variable rawMaterial composed by the system
Supplier by means of the absolute path:

main.Supplier.rawMaterial

Similarly, we can access the variable rawMaterial composed by the system Workshop by
means of the absolute path:

main.Producer.Workshop.rawMaterial

We can also use relative paths to access these variables:

– In the system Supplier, its variable rawMaterial is simply accessed by the identifier
rawMaterial.

– In the system World, this variable is accessed by the relative path:

Supplier.rawMaterial

– In the system Producer, this variable is accessed by the relative path:

owner.Supplier.rawMaterial

owner refers to the parent system, here World, then the dot notation applies.

– In the systems Workshop and Administration, this variable is accessed by the relative
path:

22

Table 2: Boolean connectives

Symbol Signature Semantics

and bool+ → bool Conjuction

or bool+ → bool Disjunction

not bool → bool Negation

owner.owner.Supplier.rawMaterial

The above principle works in all directions:

– In the system World, the variable rawMaterial of the system Workshop is accessed by
the relative path:

Producer.Workshop.rawMaterial

– In the system Administration, it is accessed by the relative path:

owner.Workshop.rawMaterial

And so on. . .

4.4 Boolean Expressions

Σ� implements the usual Boolean expressions: the constants false and true, and the con-
nectives and, or, and not with their usual meaning. Their syntax is as follows.

BooleanExpression ::=
Expression (’or’ Expression)*

| Expression (’and’ Expression)*
| ’not’ Expression

Here follows an example of Boolean expression.

status==TODO and main.SelectStaff.status==COMPLETED

The signatures of Boolean connectives are given in Table 2.
As usual, the operator not has priority over the operator and which itself has the prior-

ity over the operator or. For instance, the expression A and B or not A and C is thus
interpreted as (A and B) or ((not A) and C).

4.5 Inequalities

Σ� implements the usual inequalities to compare values of left and right expressions:

– F == G is true if the value of F equals the value of G, and false otherwise.

– F != G is true if the value of F differs from the value of G, and false otherwise.

– F < G is true if the value of F is less than the value of G, and false otherwise.

– F <= G is true if the value of F is less or equal to the value of G , and false otherwise.

23

Table 3: Inequalities

Symbol Signature Semantics

== any× any → bool =

!= any× any → bool ̸=
< num× num → bool <

<= num× num → bool ≤
> num× num → bool >

>= num× num → bool ≥

– F > G is true if the value of F is greater than the value of G , and false otherwise.

– F >= G is true if the value of F is greater or equal to the value of G , and false otherwise.

Equality and difference apply to all types of values, while the four other inequalities apply
only to numerical values.

Table 3 gives the signatures of inequalities.
Inequalities have a higher priority than Boolean operators. Hence F>=0 and F<4 is inter-

preted as (F>=0) and (F<4).

4.6 Arithmetic Expressions

Σ� implements usual arithmetic operators: + (addition), - (subtraction), * (multiplication), /
(division), div (Euclidian division), mod (modulo) and unary - (opposite).

Their syntax is as follows.

ArithmeticExpression ::=
Expression (’+’ Expression)*

| Expression ’-’ Expression
| Expression (’*’ Expression)*
| Expression ’/’ Expression
| Expression ’div’ Expression
| Expression ’mod’ Expression
| ’-’ Expression

E.g.

3*x + 6*y*z + 4
(x+1) / 2
-y
42 mod 11

Table 4 gives the signatures of usual arithmetic expressions.
There are however several subtleties here:

– The result of the division / is always a floating point number, even though both its
arguments are integers and the numerator is a multiple of the denominator, e.g. 6 / 3
gives 2.0 and not 2.

– Both arguments of Euclidian division div and its result are integers, e.g. 7 div 3 gives
2. Same thing for mod.

– -, /, div and mod are binary operators and should not be mixed with + and *. E.g. 1 -
2 - 3 is not a valid expression, because of its fundamental ambiguity. It must be written
either (1 - 2) - 3 or 1 - (2 - 3). The same applies for instance for 2 / 3 * 4.

24

Table 4: Arithmetic expressions

Symbol Signature Semantics

+ num+ → num Addition

- num× num → num Subtraction

* num+ → num Multiplication

/ num× num → float Division

div int× int → int Euclidian division

mod int× int → int Modulo

- num → num ≥

Table 5: Usual mathematical operations

Symbol Signature Semantics

abs num → float Absolute value

ceil num → float Smaller integer larger or equal to the argument

exp num → float Exponential

floor num → float Larger integer smaller or equal to the argument

log num → float Natural logarithm

log10 num → float Base 10 Logarithm

pow num× num → float Power

sqrt num → float Square root

max num+ → float Maximum (any number of arguments)

min num+ → float Minimum (any number of arguments)

bool+ → int Number of true arguments

4.7 Built-in Functions

Σ� implements “usual” builtin functions.
Their syntax is as follows.

BuiltIn ::= UnaryBuiltIn | BinaryBuiltIn | AssociativeBuiltIn

UnaryBuiltIn ::= UnaryBuiltInSymbol ’(’ Expression ’)’
UnaryBuiltInSymbol ::=

’abs’ | ’exp’ | ’log’ | ’log10’ | ’sqrt’ | ’ceil’ | ’floor’
| ’acos’ | ’asin’ | ’atan’ | ’cos’ | ’sin’ | ’tan’
| ’bool’ | ’int’ | ’float’ | ’id’ | ’str’

BinaryBuiltIn ::= BinaryBuiltInSymbol ’(’ Expression ’,’ Expression ’)’
BinaryBuiltInSymbol ::= ’pow’

AssociativeBuilIn ::=
AssociativeBuiltInSymbol ’(’ Expression (’,’ Expression)* ’)’

AssociativeBuiltInSymbol ::= ’min’ | ’max’ | ’#’

4.7.1 Usual mathematical operations

Table 5 gives the implemented usual mathematical operations, their expected number of argu-
ments and their semantics.

E.g.

25

Table 6: Trigonometric functions

Symbol Signature Semantics

cos num → float Cosine

sin num → float Sine

tan num → float Tangent

acos num → float Arc cosine

asin num → float Arc sine

atan num → float Arc tangent

Table 7: Casts

Symbol Signature Semantics

bool any → bool Cast to Boolean

int any → int Cast to integer

float any → float Cast to float

id any → id Cast to symbol

str any → str Cast to string

abs(-5.67)
min(-1, 33.0, -12)
pow(2.0, 10)

Note the special construct # that counts the number of its arguments that have the value
true . E.g. #(A, B, C) takes the value 2 if both A and C are true and B is false.

4.7.2 Trigonometric Functions

Table 6 gives the implemented trigonometric functions, their expected number of arguments and
their semantics.

E.g.

cos(1.23)

4.7.3 Casts

Table 7 gives the implemented casts, their expected number of arguments and their semantics.
E.g.

int(1.23)
str(42)

Note that these operations may be invalid. E.g. it is impossible to cast the string "a
string" to a symbol, because a string is not a valid identifier.

4.8 Conditional Expressions

The current version of Σ� implements only one condition expression: the if-then-else expression.
Its syntax is as follows.

26

Table 8: Conditional expressions

Symbol Signature Semantics

if-then-else bool× any× any → bool If-Then-Else

ConditionalExpression ::=
IfThenElseExpression

IfThenElseExpression ::=
’if’ Condition ’then’ Expression ’else’ Expression

E.g.

if rawMaterial>=10 then rawMaterial else 0

Table 8 gives the signature of this expression.

4.9 Probability Distributions and Random Deviates

Probability distributions and random deviates come in some sense in pair.
A probability distribution is a non decreasing function from R+ into [0, 1]+. Intuitively, a

probability distribution associates to each time t, the probability that a certain event is realized
before t.

A random deviate is the inverse of a probability distribution. Intuitively, a random deviate
picks up a number z uniformly at random between [0, 1]+ and returns the first time t such that
the probability that a certain is realized before t is greater or equal to z.

Probability distributions and random deviates are at the core of the treatment of uncertain-
ties in Σ�.

Σ� generalizes the notions of probability distributions and random deviates, in particular
by allowing the codomain of distributions (and consequently the domain of random deviates) to
be other sets than [0, 1]+.

Moreover, it considers two types of probability distributions (respectively random deviates):

– Parametric probability distribution that are predefined, builtin, functions that depend on
a few parameters.

– Empirical probability distribution that are defined by sets of pairs (time, value), them-
selves given in a file. In between two points, the value of the distribution is obtained by
interpolation.

We shall give here the mathematical definitions of available distributions and random devi-
ates as well as syntax and signatures.

4.9.1 Parametric Probability Distributions

The current version of Σ� implements the following probability distributions:

– The exponential distribution that takes two parameters: a rate λ and an time t, λ > 0, t ≥
0, and returns:

exponentialDistribution(λ, t)
def
= 1− exp (−λ× t)

27

Table 9: Parametric probability distributions

Symbol Signature

exponentialDistribution R+ × R+ → [0, 1]

WeibullDistribution R+ × R+ × R+ → [0, 1]

DiracDistribution R+ × R+ → [0, 1]

See https://en.wikipedia.org/wiki/Exponential_distribution for more de-
tails on the exponential distribution.

– The Weibull distribution that takes three parameters: a scale factor α, shape factor β and
an time t, α, β > 0, t ≥ 0, and returns:

WeibullDistribution(α, β, t)
def
= 1− exp

(
−
(
t
α

)β)
See https://en.wikipedia.org/wiki/Weibull_distribution for more details
on the Weibull distribution.

– The Dirac distribution that takes two parameters: a time T and a time t, T, t ≥ 0, and
returns:

DiracDistribution(T, t)
def
=

{
0 if t < T
1 otherwise

The syntax of parametric probability distributions is as follows.

ParametricProbabilityDistribution ::=
’exponentialDistribution’ ’(’ Expression ’,’ Expression ’)’

| ’WeibullDistribution’ ’(’ Expression ’,’ Expression ’,’ Expression
↪→ ’)’

| ’DiracDistribution’ ’(’ Expression ’,’ Expression ’)’

E.g.

exponentialDistribution(arrivalRate, currentTime())
WeibullDistribution(alpha, beta, t)

Table 9 gives the signature of available parametric probability distributions.

4.9.2 Parametric Random Deviates

The current version of Σ� implements the following random deviates:

– The uniform deviate that takes two parameters: a lower bound l and an upper bound h,
l < h, and returns a number between l and h :

uniformDeviate(l, h)
def
= l + (h− l)× z

where z in a number drawn uniformly at random in [0, 1].

– The triangular deviate that takes two parameters: a lower bound l, an upper bound h, and
a mode l, l ≤ m ≤ h, and returns a number drawn at random according to a triangular dis-
tribution (https://en.wikipedia.org/wiki/Triangular_distribution) with
these three parameters.

28

https://en.wikipedia.org/wiki/Exponential_distribution
https://en.wikipedia.org/wiki/Weibull_distribution
https://en.wikipedia.org/wiki/Triangular_distribution

– The normal deviate that takes two parameters: a mean µ and a standard deviation σ,
σ > 0, and returns a number drawn at random according to a normal distribution (https:
//en.wikipedia.org/wiki/Normal_distribution), with these two parameters.

– The lognormal deviate that takes two parameters: a mean µ and a standard deviation
σ, σ > 0, and returns a number drawn at random according to a lognormal distribution
(https://en.wikipedia.org/wiki/Log-normal_distribution) with these two
parameters.

– The exponential deviate that takes one parameter: a rate λ, λ > 0, and returns a number
drawn at random such that:

exponentialDeviate(λ)
def
= log(z)

λ

where z is a number drawn uniformly at random in [0, 1].

– The Weibull deviate that takes two parameters: a scale factor α and shape factor β,
α, β > 0 and returns a number drawn at random such that:

WeibullDeviate(α, β)
def
= α× log(z)

1
β

where z is a number drawn uniformly at random in [0, 1].

– The range deviate that takes two parameters: a lower bound l and an upper bound h,
both integers and such that l ≤ h, and returns an integer drawn at random uniformly and
random in the interval [l, h]

The syntax of parametric random deviates is as follows.

ParametricRandomdeviate ::=
’uniformDeviate’ ’(’ Expression ’,’ Expression ’)’

| ’triangularDeviate’ ’(’ Expression ’,’ Expression ’,’ Expression
↪→ ’)’

| ’normalDeviate’ ’(’ Expression ’,’ Expression ’)’
| ’lognormalDeviate’ ’(’ Expression ’,’ Expression ’)’
| ’exponentialDeviate’ ’(’ Expression ’)’
| ’WeibullDeviate’ ’(’ Expression ’,’ Expression ’)’
| ’rangeDeviate’ ’(’ Expression ’,’ Expression ’)’

E.g.

uniformDeviate(3.1, 3.6)
rangeDeviate(0, 10)

Table 10 gives the signature of available parametric random deviates.

4.9.3 Empirical Distributions and Deviates

Empirical distributions and empirical deviates are characterized by set of points (time, value).
These points are stored into a CSV file, where values are separated by tabulations. Figure 8
shows such a file.

An empirical distribution D can thus be seen as a list of points (t0, v0) · · · (tn, vn), such that
t0 < · · · < tn. Σ� implements two ways of calculating the value of D at time t:

29

https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Log-normal_distribution

Table 10: Parametric random deviates

Symbol Signature

uniformDeviate R× R → R
triangularDeviate R× R× R → R
normalDeviate R× R+ → R
lognormalDeviate R× R+ → R
exponentialDeviate R+ → R+

WeibullDeviate R+ × R+ → R+

rangeDeviate N× N → N

0 0.0
1000 0.1
2000 0.3
3000 0.6
4000 0.95
5000 0.99

Figure 8: A CSV file containing an empirical distribution

– By means of a stepwise interpolation:

D(t)
def
=


v0 if t ≤ t0
vi if ti < t ≤ ti+1

vn if t > tn

– By means of a linear interpolation:

D(t)
def
=


v0 if t ≤ t0
vi + (vi+1 − vi)× t−ti

ti+1−ti
if ti < t ≤ t+1

vn if t > tn

Note that values of empirical distributions do not need to be between 0 and 1. This extension
is extremely useful to deal with external data.

A random deviate R can thus be seen as a list of points (t0, v0) · · · (tn, vn), such that t0 <
· · · < tn and 0 ≤ v0 < · · · < vn ≤ 1.

Σ� implements two ways of calculating the value of R:

– By means of a stepwise interpolation:

R
def
=


t0 if z ≤ v0
ti if vi < z ≤ vi+1

tn if z > tn

where z is a number drawn uniformly at random in [0, 1].

– By means of a linear interpolation:

R
def
=


t0 if z ≤ v0
ti + (ti+1 − ti)× z−vi

vi+1−vi
if vi < z ≤ v+1

tn if v > vn

30

Table 11: Time Primitives

Symbol Signature Semantics

currentTime bool Current simulation time

missionTime int Mission time

where z is a number drawn uniformly at random in [0, 1].

The syntax of empirical distributions and deviates is as follows.

EmpiricalDistribution ::=
’empiricalDistribution’ ’(’ String ’,’ Interpolation ’)’

EmpiricalDeviate ::=
’empiricalDeviate’ ’(’ String ’,’ Interpolation ’)’

Interpolation ::=
’step’ | ’linear’

String = "[ˆ"]+"

E.g.

empiricalDistribution("../Data/WaveHeight.csv", linear)

The path to the CSV file containing data (defining the empirical distribution) should
better not contain backslashes or these backslashes must be doubled. The reason is
that the backslash is an escape character in nearly all programming languages. It is
very unfortunate that Windows uses it as the separator in paths. The solution consists
in substituting slashes for backslashes.

4.10 Time Primitives

Σ� implements two time primitives:

– currentTime that takes no argument and returns the current simulation time; and

– missionTime that takes no argument and returns the mission time.

E.g.

remainingTime = missionTime() - currentTime()

Table 11 gives their signature.

5 Instructions

The current version of Σ� provides a limited set of instructions. This section reviews them in
turn.

31

5.1 Skip

The instruction skip does. . . nothing. It is seldom used in practice. It consists of the keyword
skip followed by a semicolon ;. E.g.

skip;

5.2 Assignment

Changes of values of variables are performed by means of assignments. An assignment consists
of the path of the variable to be assigned, the symbol =, the expression defining the value of the
variable, and finally a semicolon ;. E.g.

requiredQuantity = order*5 + 15;

There are two specialized forms of assignments, the increment that adds a value to a variable
and the decrement that removes a value from the variable. Symbols for increment and decrement
are respectively += and -=. E.g.

Supplier.rawMaterial -= renewedQuantity;
rawMaterial += renewedQuantity;

A variable must be assigned a value with a type compatible with its own type. E.g. if the
variable is Boolean, the right-hand side expression must evaluate to a Boolean value. Similarly,
if the variable is a float, the right-hand side expression must evaluate either to an int or to a
float value. Cast operators are provided in case adjustments must be made.

The left hand side of an increment must be either a int, a float or a string variable (and
indeed its right hand side value must be compatible with the left hand side type). Similarly,
The left hand side of an increment must be either a int or a float variable.

5.3 If-Then-Else

As most, if not all, programming and modeling languages, Sigma provides a conditional instruc-
tion if condition then instruction else instruction. The else clause is optional.

if waveHeight <= 1.25 then
seaCondition = CALM;

else if waveHeight <= 4 then
seaCondition = MODERATE;

else
seaCondition = ROUGH;

5.4While

Since version 1.5 of Sigma tools, Sigma provides a while loop that repeats the same instruction
until a given condition is fulfilled. Its syntax is while condition instruction. E.g.

int i;
float z;
i = 1;
count = 0;
while i<10 {

z = randomDeviate(0.0, 1.0);
randomDeviate z <= 0.2 then

32

count += 1;
i += 1;
}

5.5 Return

The instruction return is used to return a value while exiting the current sequence of instruc-
tions. Clauses trigger and duration of activities must finish with such return instruction.
The instruction consists of the keyword return followed the expression defining the value to
be returned and terminated with a semicolon ;. E.g.

duration:
return 33;

5.6 Blocks of Instructions

Blocks of instructions are sequences of instructions executed in a row. A block of instruction
starts with the curly brace { and ends with the curly brace }. E.g.

completion: {
rawNoduleStock -= dewateredQuantity;
dewateredNoduleStock += dewateredQuantity;
dewateringState = STANDBY;
}

6 S2ML Constructs

This section reviews S2ML constructs, as they are implemented in Σ�. S2ML stands for system
structure modeling language (Batteux, Prosvirnova, and Rauzy, 2018; Rauzy and Haskins,
2019). However, more than a modeling language per se, it is a versatile set of constructs used to
structure models. These constructs are stemmed from both object-oriented programming (Abadi
and Cardelli, 1998) and prototype-oriented programming (Noble, Taivalsaari, and Moore, 1999).
They are already used in several modeling languages, notably S2ML+SBE (Rauzy, 2020) and
AltaRica 3.0 (Batteux, Prosvirnova, and Rauzy, 2019), see also (Rauzy, 2022).

6.1 Cloning

It is often the case that complex technical and socio-technical systems involves several identical
or at least similar subsystems.

For instance, the system Producer may use two identical machines working in parallel to
deliver the required amount of products. It would be indeed possible to duplicate the code
representing the behavior of each machine. This would be however both tedious, error prone
and would not reflect that the two machines are actually identical. Σ� provides the cloning
mechanism to solve this issue.

The code given in Figure 9 illustrates the use of this mechanism.
This code creates a second machine, Machine2, by cloning the subsystem Machine1. The

clones directive duplicates Machine1, its variables, subsystems and activities, and gives a
new name to the clone, here Machine2.

Cloning is thus a very powerful mechanism, stemmed from prototype-oriented programming.

33

system World.Producer
...
system Machine1

MachineState state(init = STANDBY);

activity ProduceProduct
trigger:

return owner.order>=2 and owner.rawMaterial>10 and state
↪→ ==STANDBY;

start: {
state = WORKING;
owner.rawMaterial -= 10;
}

completion: {
state = STANDBY;
owner.order -= 2;
owner.product += 2;
}

duration:
return 5;

end
end

clones Machine1 as Machine2;
...

end

Figure 9: Code for the ProduceProduct of the producer with cloning of a machine

34

domain MachineState {STANDBY, WORKING, FAILED}

class Machine
MachineState state(init = STANDBY);

activity ProduceProduct
// description of the activity (as previously)

end
end

system World.Producer
...
Machine Machine1;
Machine Machine2;
...

end

Figure 10: Code for the ProduceProduct of the producer instantiating of the class Machine

Cloning must however be handled with care: according to themodel-as-script principle,
the clones directive is applied when the declaration of the Producer is “executed”.
Machine1 is duplicated as of the point where the clones directive is applied. Con-
sequently, it is impossible to declare first Machine1, then to clone it into Machine2
and eventually to declare the activity ProduceProduct of Machine1, because with
such declaration order, Machine1 would be cloned without its activity.

6.2 Classes and Instances

Cloning makes it possible to reuse modeling components within a model, as illustrated in the
previous section. It is often the case however, that on-the-shelf modeling components can be
declared into libraries and then used at will into different models. The object-oriented class/in-
stance mechanism implements this idea.

As an illustration, consider again the declaration of the Producer. We may consider that
the description of machines is worth to put into a dedicated library. We can then declare a class
Machine and instantiate this class twice in our model, as illustrated in Figure 10.

The cloning and class/instance mechanisms produce eventually the same results. The former
corresponds to top-down approach to design models, while the latter corresponds to a bottom-up
one. The top-down approach is more often used in system architecture and in reliability analyses,
while the bottom-up one is more often used in multi-physic simulation. The bottom-up approach
involves the reuse of modeling components while the top-down approach involves the reuse of
modeling patterns. As discussed in already cited references (Batteux, Prosvirnova, and Rauzy,
2018; Rauzy, 2022; Rauzy and Haskins, 2019), this corresponds to different way of building
knowledge about a particular domain. This phenomena has been well explained by Hatchuel and
Weill with their CK theory of innovation (Hatchuel and Weill, 2009). Indeed, in practice, both
a mixed approach is often used, involving both cloning and class/instance mechanisms. Hence
the interest of S2ML that gathers in a unified framework constructs stemmed from prototype-
and object-oriented programming.

35

system World.Producer
...
Machine Machine1

parameter Real lowerBoundProductionTime = 4;
parameter Real upperBoundProductionTime = 6;

end
Machine Machine2

parameter Real upperBoundProductionTime = 7;
end
...

end

Figure 11: Instantiating the class Machine with redefining the value of a parameter

class RepairableComponent
...
activity Failure

// Description of the activity
end

activity Repair
// Description of the activity

end
...

end

class Machine
extends RepairableComponent;
...

end

Figure 12: The class Machine inherits from the class RepairableComponent

6.3 Polymorphism and Inheritance

Parameters are an excellent way to make on-the-shelf, reusable, modeling components generic. In
Σ�, parameters can be defined with a default value and redefined when the class is instantiated.
Assume for instance that the duration of the activity ProduceProduct of our machines obey
a uniform distribution between two bounds. It is then recommended to define these bounds as
parameters. Their value can then be changed as illustrated in Figure 11.

In object-oriented theory, one speaks about polymorphism or genericity of components
(Abadi and Cardelli, 1998).

When designing libraries of on-the-shelf modeling components, it is often the case that
however that the description of a component can be obtained by refining the definition of a more
abstract component. One says then that the concrete component inherits from the abstract one.
If composition can be seen as a “is-part-of” relation, inheritance can be seen as a “is-a” relation.

As an illustration, consider again our machines. The description of a machine can be seen as
the specialization of a more abstract repairable component. This repairable component would
declare two activities, Failure and Repair, and could be inherited by many other types of
components than machines. In Σ� this operation is performed by the extends directive. Figure
12 illustrates this mechanism.

36

domain UnitState {STANDBY, WORKING}

class Unit
UnitState state(init = STANDBY);
...

end

system Main
...
Unit A;
Unit B;
attribute A.state.init = WORKING;
...

end

Figure 13: Redeclaration of the attribute init of the variable state of the subsystem A

When the class Machine is instantiated, all elements of the class RepairableComponent
are duplicated in the instance as if they were declared in the class Machine. The difference
with declaring an instance of the class RepairableComponent in the class Machine is that
modeling elements of the former are directly elements of the latter, and not of a subsystem of
the latter.

6.4 Attribute (re)Declaration

Σ� makes it possible to (re)declare attributes. Figure 13 illustrates this mechanism. By default,
units are initially in standby. We want however that the unit A to be initially working. This is
achieved by redeclaring its attribute init, as show in the figure.

6.5 Splitting the Model into Several Files

Σ� makes it possible to split a model into several files. This is either done at tool level, using
the notion of Project in the Sigma Workshop, or by means of the import directive. The latter
works as follows.

import "Components/Valve.sigma"

To get more information about the Sigma Workshop, visit:
../SigmaWizardUserManual/SigmaWizardUserManual.html

7 More on Activities

This section digs further in the semantics of Σ� regarding the activities.

7.1 Vocabulary

When the trigger of an activity returns true, one says that it is satisfied and that the activity
is enabled . If the trigger returns false, one says that it is falsified and that the activity is
disabled .

When an activity gets enabled at time t, its start is scheduled at t. When the activity is
actually started, its completion is scheduled at time t+ d, where d is the value returned by the
clause duration of the activity.

37

../SigmaWizardUserManual/SigmaWizardUserManual.html

system WorldChecker
parameter int worldValue = 42;
activity CheckWorld

trigger: return worldValue>0;
start: skip;
completion: skip;
duration: return 1;

end
end

Figure 14: Trigger without variables

system UndecidedGuy
bool available(init = true);
activity DoSomething

trigger: return available or not available;
start: available = not available;
completion: available = not available;
duration: return 1;

end
end

Figure 15: Repetitive starts

Events, i.e. starts and completions of activities as well as observations that are scheduled
at the least time are called candidate events. By abuse of generality, one says that an activity
is candidate if either its start or its completion are candidate.

7.2 Triggers

The trigger of an activity is checked each time the state of the system is modified and this
modification impacts the trigger. It is assumed that the initialization of the state of system
impacts all of triggers of the system.

7.2.1 Triggers without Variables

This leads to a first subtlety. Consider the model given in Figure 14.
The trigger of the activity CheckWorld returns true. It is thus satisfied. However, it

involves no variable. Consequently, it is never impacted by a change of a state of the system,
which means in turn that it is never enabled, but right after the initialization.

The activity CheckWorld is thus executed only once, starting at time t = 0 and completed
at time t = 1.

7.2.2 Repetitive Starts

Now consider the model given in Figure 15.
Now the trigger of the activity DoSomething involves the variable available. However,

it is a tautology, i.e. returns always true.
The activity DoSomething is thus started at time t = 0. Its completion is scheduled at

time t = 1. So far, so good.

38

system Agent
int remainingJobs(init = 3);
activity TakeJob

trigger: return remainingJobs>0;
start: remainingJobs -= 1;
completion: skip;
duration: return 1;

end
end

Figure 16: A zealous agent

The problem here is that its start modifies the state of the system and impacts . . . the trigger
of the activity DoSomething. This trigger is thus evaluated and found true. Consequently, a
new instance of the activity DoSomething is thus started, still at t = 0.

The completion of this new instance is scheduled at time t = 1. Its start creates modifies
the state of the system. . .

The system enters into an infinite loop and is stuck at time t = 0.

7.2.3 A Zealous Agent

The two previous examples are arguably stupid. The one given in Figure 16 is more interesting.
At start, it remains 3 jobs to be performed by the agent. As the trigger of the activity

TakeJob is satisfied, this activity is started at time t = 0. Its completion is scheduled at time
t = 1.

The start of the activity modifies the state of the system, which impacts the trigger of the
activity TakeJob. A new instance of this activity is thus started. And so on until it remains
no available job.

The 3 jobs are performed in parallel and completed at time t = 1. Our agent is thus especially
zealous.

Now consider the model given in Figure 16 in which the actions at start and at completion
are switched:

start: skip;
completion: remainingJobs -= 1;

In this case, the activity TakeJob is started at t = 0. As the state of the system is not
modified by the action at start, no new activity is started at time t = 0. The activity TakeJob
is thus completed at time t = 1, which modifies the state of the system and starts a new instance
of the activity. And so on. The 3 jobs are thus completed at time t = 3. Our zealous agent
became lazy.

7.3 Conflicts

7.3.1 Alice versus Bob

Some activities may be in competition for a resource, thereby creating conflicts. As an illustra-
tion, consider the following case.

Alice and Bob work at the packaging station in a production line. Their job consists in
taking a product in the input buffer of the station, packaging it and deliver it into the output
buffer of the station. Alice and Bob work at the same place and there is no established rule on

39

domain WorkerState {STANDBY, WORKING}

system ProductionLine
system InputBuffer

int products(init = 3);
end
system PackagingStation

system Alice
int products(init = 0);
WorkerState state(init = STANDBY);
activity PackageProduct

trigger:
return main.InputBuffer.products>0 and state==

↪→ STANDBY;
start: {

main.InputBuffer.products -= 1;
products += 1;
state = WORKING;
}

completion: {
state = STANDBY;
products -= 1;
main.OutputBuffer.products += 1;
}

duration:
return 2;

end
end
clones Alice as Bob;

end
system OutputBuffer

int products(init = 0);
end

end

Figure 17: Conflict at the workstation

who takes a product in the input buffer first, in case both of them are ready to work on a new
product at the same time.

A code representing this situation is given in Figure 17.
At time t = 0, the activities PackageProduct of both Alice and Bob are enabled. Both

are thus started, no matter in which order. Two products are removed from the input buffer.
At time t = 2, both activities are completed. Still at time t = 2, both activities are

enabled again. There is a problem however: it remains only one product in the input buffer.
Consequently, only can actually start.

In such a situation, the semantics of Σ� consists in drawing at random one of the candidate
activities, and to start it. All candidate activities have the same probability to be selected.
Before the selected activity is started, its trigger is checked again. If it is falsified, the activity
is simply abandoned. Otherwise, it is actually started.

Assume in our example that the activity PackageProduct of Alice is selected. Its trigger
is checked. It is satisfied, consequently the activity is started. The remaining product in input
buffer is removed from the latter. Now, all candidate activities are considered again. It remains

40

system ProductionLine
system InputBuffer

int products(init = 3);
end
system PackagingStation

int products(init = 0);
int availableWorkers(init = 2);
activity PackageProduct

trigger:
return main.InputBuffer.products>0 and availableWorkers

↪→ >0
start: {

main.InputBuffer.products -= 1;
products += 1;
availableWorkers -= 1;
}

completion: {
availableWorkers += 1;
products -= 1;
main.OutputBuffer.products += 1;
}

duration:
return 2;

end
end
system OutputBuffer

int products(init = 0);
end

end

Figure 18: A model allowing multiple instances of an activity

only one, namely the activity PackageProduct of Bob. It is thus selected. Its trigger is
falsified, consequently the activity is abandoned.

This semantics introduces an element of non-determinism in otherwise fully deterministic
models. It is however the only elegant and efficient way of dealing with conflicts among activities.

7.3.2 Multiple Instances

Another way to represent the production line of the previous section is to consider that there
is a pool of indistinguishable workers (with two workers in that case). A possible code for this
approach is given in Figure 18.

At time t = 0, the activity PackageProduct is enabled. The activity is thus started. Its
completion is scheduled at time t = 2.

As its instruction at start modifies the state of the system and impacts the trigger of the
activity PackageProduct, the latter is evaluated and found satisfied. A second instance of
the activity PackageProduct is thus started. Its completion is scheduled at time t = 2, as
the first one.

As the instruction at start modifies the state of the system and impacts the trigger of the
activity PackageProduct, the latter is evaluated again. But this time, it is falsified as there
is no more available workers.

A time t = 2, one of the instance of the activity PackageProduct is completed (af-

41

system Producer
bool available(init = true);
int quantityToProduce(init = 0);
int totalProduction(init = 0);
activity Produce

trigger:
return available;

start: {
available = false;
quantityToProduce = rangeDeviate(10, 20);
}

completion: {
available = true;
totalProduction += quantityToProduce;
}

duration:
return 2*quantityToProduce;

end
end

Figure 19: Calculating the duration in the action at start

ter a random selection), which modifies the state of the system. The trigger of the activity
PackageProduct is thus evaluated and found satisfied. A new instance of this activity is thus
started at time t = 2. Its completion is scheduled at time t = 4.

We have now two events scheduled: the completion remaining of the instance of the activity
PackageProduct started at time t = 0, at the start of the instance that just scheduled. One
of these events is thus selected at random and executed. No matter which one is executed, this
modifies the state of the system and the trigger of the activity PackageProduct. However,
the latter is now falsified as there is no more products in the input buffer.

7.4 Action at Start versus Duration

When an activity is launched, two instructions (aside the assessment of its trigger) are executed
in order:

1) Its action at start;

2) The calculation of its duration.

This makes it possible to use the action at start to determine the duration.
As an illustration, consider a producer who is periodically ordered a certain quantity to

produce. Assume that this quantity is not always the same, but obeys a some known distribution.
Assume moreover that the duration of the production depends linearly on this quantity to
produce.

A possible model for this case study is given in Figure 19.
The variable quantityToProduce, which is set in the action at start, is used to calculate

the duration.

8 More on Variables and Expressions

This section digs further in the use of variables in Σ�.

42

8.1 The Three Categories of Variables

8.1.1 Vocabulary

Variables can be declared at three different places in Σ� models: in systems, in activities and
in blocks of instructions. Their life-cycle and their scope differ in each case:

– Variables declared in systems are reachable from everywhere in the model. Moreover, they
are reachable from the time they are created to the time they are deleted, both directly
or indirectly (via their parent system). The current version of Σ� does not implement yet
directive to create, delete or move objects dynamically. Consequently, variables declared
in systems are always reachable.

– Variables declared in activities (outside of the clauses trigger, start, completion
and duration are created when an instance of the activity is started. They are reachable
only in clauses start, completion and duration. They are deleted when the instance
is completed.

– Finally, variables declared in blocks instructions are reachable only in the instructions of
the block located after their declaration.

We call variables of each of the above categories respectively system variable, activity vari-
able, and instruction variable.

8.1.2 Example

To illustrate the differences among these categories of variables, consider a storage unit that
stores initially a certain number of products, and that serves one after the other its clients, i.e.
that it delivers them the quantity of products the client demands. Indeed, it cannot deliver
more products than it has in stock. Assume moreover, that the numbers of products the clients
demand obey some random distribution.

The model given in Figure 20 is a possible implementation of such a unit.
The system StorageUnit declares two system variables: storedProducts and delive-

redProducts. The activity DeliverProducts declares one activity variable, delivered-
Quantity. Finally, the clause start of this activity declares one instruction variable expected-
Quantity.

Variables storedProducts and deliveredProducts exist as long as the system Stora-
geUnit exists, i.e. during the whole mission time.

Each time a new instance of the activity DeliverProducts is started, a variable delive-
redQuantity attached to this instance is created. This means that if several instances of
the activity DeliverProducts exist simultaneously, there exist several copies of the variable
deliveredQuantity. This is not a problem because the variable is visible only in the activity.
In a way, this is similar to call by the same name two variables declared by two different systems.

The variable deliveredQuantity attached to an instance of the activity Deliver-
Products is created at the beginning of its action at start, i.e. just before the creation of
the instruction variable expectedQuantity. It is deleted at the end of its action at comple-
tion, i.e. after the instruction:

deliveredProducts += deliveredQuantity;

The variable expectedQuantity is created with the instruction:

int expectedQuantity;

43

system StorageUnit
int storedProducts(init=10);
int deliveredProducts(init=0);
activity DeliverProducts

int deliveredQuantity;
trigger:

return storedProducts>0;
start: {

int expectedQuantity;
expectedQuantity = rangeDeviate(2, 6);
deliveredQuantity = min(storedProducts, expectedQuantity);
storedProducts -= deliveredQuantity;
}

completion:
deliveredProducts += deliveredQuantity;

duration:
return 2*deliveredQuantity;

end
end

Figure 20: Trigger without variables

and deleted after the instruction:

storedProducts -= deliveredQuantity;

Activity and instruction variables do not have initial values. Consequently, they must
be assigned before being referred to.

8.1.3 Execution

A possible execution of the model given in Figure 20 could be as follows.
At time t = 0, the activity DeliverProducts is enabled. A first instance of this activity

is thus started, which creates a variable deliveredQuantity associated with this instance.
Assume that the instruction variable expectedQuantity receives the value 3. At the end
of the action at start of this first instance of the activity DeliverProducts, the activity
variable deliveredQuantity has the value 3 and the system variable storedProducts has
the value 10 − 3 = 7. The completion of this first instance of the activity is scheduled at time
t = 2× 3 = 6.

The activity DeliverProducts is still enabled. A second instance of this activity is thus
started (still at time t = 0), under the same conditions as the previous one. Assume that
this time the instruction variable expectedQuantity receives the value 5. At the end of the
action at start of this second instance of the activity DeliverProducts, the activity variable
deliveredQuantity has the value 5 and the system variable storedProducts has the
value 7 − 5 = 2. The completion of this second instance of the activity is scheduled at time
t = 2× 5 = 10.

The activity DeliverProducts is still enabled. A third instance of this activity is thus
started (still at time t = 0), under the same conditions as the two previous ones. Assume that
this time the instruction variable expectedQuantity receives the value 4. At the end of the
action at start of this second instance of the activity DeliverProducts, the activity variable
deliveredQuantity has the value min(2, 4) = 2 and the system variable storedProducts

44

class WindMill
...
activity Start

trigger:
return main.windForce>10 and owner.windForce<25

...
end
...

end

system WindFarm
float windForce(init=0);
...
WindMill WM01;
...

end

Figure 21: Incorrect references in classes

has the value 2 − 2 = 0. The completion of this third instance of the activity is scheduled at
time t = 2× 2 = 4.

Now, the activity DeliverProducts is disabled. The time can eventually elapse.
The next events are in order:

– The completion of the third instance of the activity DeliverProducts, at time t = 4;

– The completion of the first instance of the activity DeliverProducts, at time t = 6;

– Finally, the completion of the second instance of the activity DeliverProducts, at time
t = 10.

8.2 Classes and Paths

Just as systems, classes are name spaces for variables. What can be referred to from a class
is however restricted compared to what can be referred from a system in the main hierarchy.
Classes can actually be reused in any context. Consequently, no “bet” can be taken on what
the context in which a class will be instantiated is.

The (excerpt of a) model of a wind farm given in Figure 21 illustrates this problem.
As there are many windmills in a wind farm, it is a good idea to declare a class for windmills.

Now, a windmill can be started only if the force of the wind is above a certain threshold and below
an another one. Although local variations must probably be considered, the force of the wind is
probably not a property of a particular windmill. It is rather common to all windmills of the wind
farm. It is thus tempting, in the class WindMill to refer to the variable windForce of the main
system WindFarm. This is what the two references main.windForce and owner.windForce
are doing. This is however not allowed as it muts be possible to instantiate the class WindMill
in any context, including in a context in which the parent of the instance of WindMill does
not declare a variable windForce.

The Σ� compiler may not reject a model such as the one of Figure 21. Nevertheless, it is
certainly not a good practice to count on that!

A workaround consists in declaring a variable windForce local to the class WindMill and
an activity UpdateWindForces in the system WindFarm that updates the local windForce
by means of the global one.

45

References

Abadi, Mauricio and Luca Cardelli (1998). A Theory of Objects. New-York, USA: Springer-
Verlag. isbn: 978-0387947754 (cited on pages 33, 36).

Batteux, Michel, Tatiana Prosvirnova, and Antoine Rauzy (2018). “From Models of Structures
to Structures of Models”. In: IEEE International Symposium on Systems Engineering (ISSE
2018). Roma, Italy: IEEE. doi: 10.1109/SysEng.2018.8544424 (cited on pages 6, 11,
33, 35).

— (2019). “AltaRica 3.0 in 10 Modeling Patterns”. In: International Journal of Critical Computer-
Based Systems 9.1–2, pages 133–165. doi: 10.1504/IJCCBS.2019.098809 (cited on
pages 6, 18, 33).

Cassandras, Christos G. and Stéphane Lafortune (2008). Introduction to Discrete Event Systems.
New-York, NY, USA: Springer. isbn: 978-0-387-33332-8 (cited on page 6).

deWeck, Olivier, Daniel Roos, and Christopher L. Magee (2011). Engineering Systems - Meeting
Human Needs in a Complex Technological World. Cambridge, MA 02142-1315, USA: MIT
Press. isbn: 978-0262016704 (cited on page 6).

Hatchuel, Armand and Benoit Weill (2009). “C-K design theory: an advanced formulation”. In:
Research in Engineering Design 19.4, pages 181–192 (cited on page 35).

Noble, James, Antero Taivalsaari, and Ivan Moore (1999). Prototype-Based Programming: Con-
cepts, Languages and Applications. Berlin and Heidelberg, Germany: Springer-Verlag. isbn:
978-9814021258 (cited on page 33).

Rauzy, Antoine (2020). Probabilistic Safety Analysis with XFTA. Les Essarts le Roi, France:
AltaRica Association. isbn: 978-82-692273-0-7 (cited on page 33).

— (2022). Model-Based Reliability Engineering – An Introduction from First Principles. Les
Essarts le Roi, France: AltaRica Association. isbn: 978-82-692273-2-1 (cited on pages 33,
35).

Rauzy, Antoine and Cecilia Haskins (2019). “Foundations for Model-Based Systems Engineering
and Model-Based Safety Assessment”. In: Journal of Systems Engineering 22, pages 146–
155. doi: 10.1002/sys.21469 (cited on pages 6, 33, 35).

Rauzy, Antoine B. (2023). Σ�WORKSHOP User Manual. Reference Manual SIG-RM-2023-
004. Systemic Intelligence. url: ../SigmaWorkshopUserManual/SigmaWorkshopUserManual.
html (cited on pages 18, 19).

Walden, David D. et al. (2015). INCOSE Systems Engineering Handbook: A Guide for System
Life Cycle Processes and Activities, fourth edition. Hoboken, NJ, USA: Wiley-Blackwell.
isbn: 978-1118999400 (cited on page 6).

46

https://doi.org/10.1109/SysEng.2018.8544424
https://doi.org/10.1504/IJCCBS.2019.098809
https://doi.org/10.1002/sys.21469
../SigmaWorkshopUserManual/SigmaWorkshopUserManual.html
../SigmaWorkshopUserManual/SigmaWorkshopUserManual.html

Index

Absolute path, 22
absolute path, 11
Action at completion, 9
Action at start, 9
Activity, 7, 9, 54
Activity schedule, 37
Activity variable, 43
Actor, 13
Addition, 24
And, 23
Arithmetic expression, 24
Arithmetic operation, 52
Assignment, 32, 54
Attribute, 16
Attribute (re)declaration, 55
Attribute redeclaration, 37

Basic type, 14, 20, 50
Blocks of instructions, 33
Boolean Expression, 52
Boolean expression, 23
Built-in function, 25
Builtin expression, 52

Candidate activity, 38
Candidate event, 38
Cast, 52
Class, 55
Clones directive, 55
Cloning, 33
Comment, 14
Completion, 54
completion, 10
Composition, 13
Condition, 20, 51
Condition expression, 53
Conditional instruction, 32
Conflict, 39
Constant, 17, 21, 50, 52
Container, 13
Count (expression), 53
currentTime, 31, 54

Decrement, 32
Dirac distribution, 28
Disabled activity, 37
Division, 24

Domain, 16, 50
Duration, 9, 54
duration, 10

EBNF grammar, 49
Ellipses, 9
Empirical deviate, 29
Empirical distribution, 29
Enabled (activity), 10
Enabled activity, 37
Euclidian division, 24
Event, 38
Exponential deviate, 29
Exponential distribution, 27
Expression, 51
Extends directive, 55

False, 23
false, 21

Identifier, 14, 22, 52
If-Then-Else, 26
if-then-else (expression), 53
If-then-else instruction, 54
Import (directive), 37
Import directive, 49, 55
Increment, 32
Indicator, 18, 51
inequalities, 23
Inequality, 52
init, 16
Instance, 55
Instruction, 54
Instruction block, 54
Instruction variable, 43

Linear interpolation, 30
Lognormal deviate, 29

Main, 14, 22
Mathematical operation, 25, 52
missionTime, 31, 54
Model, 49
Modulo, 24
Monte-Carlo simulation, 18
Multiline comment, 14
Multiplication, 24

47

Normal deviate, 29
Not, 23

Object-orientation, 13
Observation, 38
Observer, 17, 50
Opposite, 24
Or, 23
Owner, 14, 22

Parameter, 17, 50
Path, 11, 14, 22, 52
Probability distribution, 27, 53
Project, 37
Prototype, 13

Random deviate, 27, 53
Range deviate, 29
Redeclaration, 9
References, 21
Relative path, 22
relative path, 13
Return, 33

Signature, 21
Single line comment, 14
Skip, 32, 54
Start, 54
start, 10
State variable, 16
Stepwise interpolation, 30
Subtraction, 24
System, 7, 49
System variable, 43

Temporary variable, 16
Time primitive, 31, 54
Time series, 18
Triangular deviate, 28
Trigger, 54
trigger, 10
Trigger falsification, 37
Trigger satisfaction, 37
Triggering condition, 9
Trigonometric function, 26, 52
True, 23
true, 21
Type, 21

Uniform deviate, 28
Unit, 14

unit, 16

Variable, 7, 16, 50
Variable life-cycle, 43
Variable scope, 43

Weibull deviate, 29
Weibull distribution, 28
While loop, 32, 54

48

Table 12: EBNF constructs

Expression Meaning

S ::= E The non-terminal symbol S is defined by the expression E
E F E followed F
E | F E or F
E* Any number of E
E+ Any positive number of E
E? 0 or 1 E
(E) Grouping

’...’ Terminal symbol

A Grammar

A.1 Extended Backus-Naur Form

This section presents EBNF grammar of Sigma.
Table 12 recalls the EBNF constructs and their meaning.

A.2 Models and Systems

The grammar of models, classes and systems is as follows.

Model ::=
Declaration*

Declaration ::=
DomainDeclaration

| ClassDeclaration
| SystemDeclaration
| ActivityDeclaration
| ImportDirective

SystemDeclaration ::=
’system’ Path ObjectDeclaration* ’end’

ObjectDeclaration ::=
ConstantDeclaration

| ParameterDeclaration
| VariableDeclaration
| ObserverDeclaration
| IndicatorDeclaration
| SystemDeclaration
| InstanceDeclaration
| ActivityDeclaration
| ExtendsDirective
| ClonesDirective
| AttributeDeclaration

49

A.3 Variables

A.3.1 Basic Types and Domains

The grammar of basic types and domains is as follows.

Type ::= BasicType | Domain

BasicType ::= ’bool’ | ’int’ | ’float’ | ’id’ | ’str’

DomainDeclaration ::= ’domain’ Identifier SymbolicConstantSet
SymbolicConstantSet ::= ’{’ SymbolicConstants ’}’
SymbolicConstants ::= SymbolicConstant (’,’ SymbolicConstant)*

Domain ::= Identifier
SymbolicConstant ::= Identifier

A.3.2 State and Temporary Variables

The grammar of declarations of state and temporary variables is as follows.

VariableDeclaration ::=
Type Path AttributeList? ’;’

AttributeList ::= ’(’ Attributes ’)’
Attributes ::= Attribute (’,’ Attribute)*
Attribute ::= Identifier ’=’ Expression

Attributes for variables are the following.

– init, mandatory for state variables and optional for temporary ones.

– unit, optional for all variables.

A.3.3 Constants and Parameters

The grammar of declarations of constants and parameters are as follows.

ConstantDeclaration ::=
’constant’ Type Path AttributeList? ’=’ Expression ’;’

ParameterDeclaration ::=
’parameter’ Type Path AttributeList? ’=’ Expression ’;’

Attributes for constants and parameters are the following.

– unit, optional.

A.3.4 Observers

The grammar of declarations of observers is as follows.

ObserverDeclaration ::=
’observer’ Path AttributeList? ’=’ Expression ’;’

Attributes for observers are the following.

– unit, optional.

50

A.3.5 Indicators

The grammar of declarations of indicators is as follows.

IndicatorDeclaration ::=
’indicator’ Path AttributeList?
’=’ MeasuredQuantity ’(’ Expression ’)’ ’;’

MeasuredQuantity ::=
’value’

| ’min’ | ’max’ | ’mean’ | ’sum’
| ’firstChangeTime’ | ’numberOfChanges’

Attributes for indicators are the following.

– mean, Boolean.

– standardDeviation, Boolean.

– confidenceRange90, Boolean.

– confidenceRange95, Boolean.

– confidenceRange99, Boolean.

– min, Boolean.

– max, Boolean.

– bins, integer.

– shrinkFactor, integer.

A.4 Expressions

The grammar of expressions is as follows.

Expression ::=
VariableReference

| BooleanExpression
| Inequality
| ArithmeticExpression
| BuiltInExpression
| ConditionalExpression
| ProbabilityDistribution
| RandomDeviate
| TimePrimitive

Condition ::=
VariableReference // if type bool

| BooleanExpression
| Inequality
| ConditionalExpression // if return type bool

51

A.4.1 Constants

Constant ::= Boolean | Integer | Float | Symbol |

Boolean ::= ’true’ | ’false’
Integer ::= [0-9]+
Float ::= ([0-9]*[.])?[0-9]+([eE][-+]?[0-9]+)?
Symbol ::= Identifier

A.4.2 Identifiers and Paths

Identifier ::= [_A-Za-z][_A-Za-z0-9]+
Path ::=

Identifier
| Identifier ’.’ Path
| ’main’ ’.’ Path
| ’owner’ ’.’ Path

A.4.3 Boolean Expressions

BooleanExpression ::=
Expression (’or’ Expression)*

| Expression (’and’ Expression)*
| ’not’ Expression

A.4.4 Inequalities

Inequality ::= Expression InequalitySymbol Expression

InequalitySymbol ::= ’==’ | ’!=’ | ’<’ | ’<=’ | ’>’ | ’>=’

A.4.5 Arithmetic Operations

ArithmeticExpression ::=
Expression (’+’ Expression)*

| Expression ’-’ Expression
| Expression (’*’ Expression)*
| Expression ’/’ Expression
| Expression ’div’ Expression
| Expression ’mod’ Expression
| ’-’ Expression

A.4.6 Builtin Expressions

BuiltIn ::= UnaryBuiltIn | BinaryBuiltIn | AssociativeBuilIn

UnaryBuiltIn ::= UnaryBuiltInSymbol ’(’ Expression ’)’
UnaryBuiltInSymbol ::=

52

’abs’ | ’exp’ | ’log’ | ’log10’ | ’sqrt’ | ’ceil’ | ’floor’
| ’acos’ | ’asin’ | ’atan’ | ’cos’ | ’sin’ | ’tan’
| ’bool’ | ’int’ | ’float’ | ’symbol’ | ’string’

BinaryBuiltIn ::= BinaryBuiltInSymbol ’(’ Expression ’,’ Expression ’)’
BinaryBuiltInSymbol ::= ’pow’

AssociativeBuiltIn ::=
AssociativeBuiltInSymbol ’(’ Expression (’,’ Expression)* ’)’

AssociativeBuiltInSymbol ::= ’min’ | ’max’

A.4.7 Count Expressions

CountExpression ::= ’#’ ’(’ Expression (’,’ Expression)* ’)’

A.4.8 Conditional Expressions

ConditionalExpression ::= IfThenElse

IfThenElse ::= ’if’ Condition ’then’ Expression ’else’ Expression

A.4.9 Probability Distribution and Random Deviate

ProbabilityDistribution ::=
ParametricProbabilityDistribution | EmpiricalProbabilityDistribution

ParametricProbabilityDistribution ::=
’exponentialDistribution’ ’(’ Expression ’,’ Expression ’)’

| ’WeibullDistribution’ ’(’ Expression ’,’ Expression ’,’ Expression
↪→ ’)’

| ’DiracDistribution’ ’(’ Expression ’,’ Expression ’)’

EmpiricalDistribution ::=
’empiricalDistribution’ ’(’ FileName ’,’ Interpolation ’)’

Interpolation ::=
’step’ | ’linear’

String = "[ˆ"]+"

RandomDeviate ::=
ParametricRandomDeviate | EmpiricalRandomDeviate

ParametricRandomdeviate ::=
’uniformDeviate’ ’(’ Expression ’,’ Expression ’)’

| ’triangularDeviate’ ’(’ Expression ’,’ Expression ’,’ Expression
↪→ ’)’

| ’normalDeviate’ ’(’ Expression ’,’ Expression ’)’
| ’lognormalDeviate’ ’(’ Expression ’,’ Expression ’)’
| ’exponentialDeviate’ ’(’ Expression ’)’
| ’WeibullDeviate’ ’(’ Expression ’,’ Expression ’)’

53

| ’rangeDeviate’ ’(’ Expression ’,’ Expression ’)’

EmpiricalDeviate ::=
’empiricalDeviate’ ’(’ FileName ’,’ Interpolation ’)’

A.4.10 Time Primitives

TimePrimitive ::=
’currentTime’ ’(’ ’)’

| ’missionTime’ ’(’ ’)’

A.5 Instructions

The grammar of instructions is as follows.

Instruction ::=
Skip | Assignment | IfThenElse | While

| Return | InstructionBlock

Skip ::=
’skip’ ’;’

Assignment ::=
Variable ’:=’ Expression ’;’

IfThenElse ::=
’if’ BooleanExpression
’then’ Instruction
(’else’ Instruction)?

While ::=
’while’ BooleanExpression Instruction

Return ::=
’return’ Expression ’;’

InstructionBlock ::=
’{’ Instruction+ ’}’

A.6 Activities

The grammar of activities is as follows.

ActivityDeclaration ::=
’activity’

VariableDeclaration*
TriggerClause
StartClause
CompletionClause
DurationClause

’end’

TriggerClause ::=

54

’trigger’ ’:’ Instruction

StartClause ::=
’start’ ’:’ Instruction

CompletionClause ::=
’completion’ ’:’ Instruction

DurationClause ::=
’duration’ ’:’ Instruction

A.7 S2ML Constructs

The grammar of S2ML constructs is as follows.

ClassDeclaration ::=
’class’ Identifier ObjectDeclaration* ’end’

InstanceDeclaration ::=
Identifier Path InstanceDeclarationBody

InstanceDeclarationBody ::=
(ObjectDeclaration+ ’end’)

| ’;’

ExtendsDirective ::=
’extends’ Path ’;’

ClonesDirective ::=
’clones’ Path ’as’ Path InstanceDeclarationBody

AttributeDeclaration ::=
’attribute’ Path ’=’ Expression ’;’

ImportDirective ::=
’import’ String ’;’

55

	Introduction
	Getting Started
	™ Ontology
	Systems and Variables
	Redeclarations
	Activities
	Executions
	Terminology and Additional Syntactic Constructs
	Terminology
	Identifiers and Paths
	Comments
	Units

	Variables
	Basic Types and Domains
	State and Temporary Variables
	Constants and Parameters
	Parameters
	Constants

	Observers
	Indicators

	Expressions
	Signatures
	Constants
	References to Variables and Parameters
	Boolean Expressions
	Inequalities
	Arithmetic Expressions
	Built-in Functions
	Usual mathematical operations
	Trigonometric Functions
	Casts

	Conditional Expressions
	Probability Distributions and Random Deviates
	Parametric Probability Distributions
	Parametric Random Deviates
	Empirical Distributions and Deviates

	Time Primitives

	Instructions
	Skip
	Assignment
	If-Then-Else
	While
	Return
	Blocks of Instructions

	S2ML Constructs
	Cloning
	Classes and Instances
	Polymorphism and Inheritance
	Attribute (re)Declaration
	Splitting the Model into Several Files

	More on Activities
	Vocabulary
	Triggers
	Triggers without Variables
	Repetitive Starts
	A Zealous Agent

	Conflicts
	Alice versus Bob
	Multiple Instances

	Action at Start versus Duration

	More on Variables and Expressions
	The Three Categories of Variables
	Vocabulary
	Example
	Execution

	Classes and Paths

	References
	Index
	Grammar
	Extended Backus-Naur Form
	Models and Systems
	Variables
	Basic Types and Domains
	State and Temporary Variables
	Constants and Parameters
	Observers
	Indicators

	Expressions
	Constants
	Identifiers and Paths
	Boolean Expressions
	Inequalities
	Arithmetic Operations
	Builtin Expressions
	Count Expressions
	Conditional Expressions
	Probability Distribution and Random Deviate
	Time Primitives

	Instructions
	Activities
	S2ML Constructs

