

1

Managing the Systemic Digital Twin

of an Industrial Enterprise with WorldLab & 

Daniel Krob & Antoine Rauzy1

Systemic Intelligence Group ©

June 2022

Table of contents

1. Introduction ... 2

2. Principles of systemic digital twins .. 4

2.1 Systemic digital twins .. 4

2.2 WorldLab and  ... 5

2.3 Systemic digital twin management process .. 8

3. Designing, developing & using a systemic digital twin in practice .. 9

3.1 Phase 1: designing the systemic digital twin ... 10

Step 1.1: clarifying the business problem to solve .. 10

Step 1.2: identifying the enterprise system scope .. 10

Step 1.3: constructing a functional systemic enterprise model .. 11

3.2 Phase 2: developing the systemic digital twin .. 12

Step 2.1: specifying enterprise systemic variables, data and activities .. 13

Step 2.2: developing the model in  ... 15

Step 2.3: defining decision-support dashboards ... 17

3.3 Phase 3: using the systemic digital twin .. 18

Step 3.1: creating & simulating enterprise evolution scenarios ... 18

Step 3.2: analyzing simulation results ... 18

Step 3.3: managing continuous business improvement ... 19

4. Conclusion ... 20

References ... 20

1 Emails of the authors: daniel.krob@systemic-intelligence.net and antoine.rauzy@systemic-intelligence.net

mailto:daniel.krob@systemic-intelligence.net
mailto:antoine.rauzy@systemic-intelligence.net

2

1. Introduction

A digital twin is a virtual representation of a system that serves as the digital counterpart of a concrete

product – when the system of interest is such a product – or of a business process – when the system

of interest is an enterprise – which can be used to simulate and predict the temporal evolution of the

considered system. Note that an enterprise shall be taken here in the meaning provided by enterprise

architecture, which refers to any set of hardware, software and/or human resources, put altogether

to achieve some common mission. This is a quite large concept which captures in practice any part of

a company. The concept of digital twin emerged during the last decade: to the best of our knowledge,

it can be traced back to NASA which proposed in 2010 the first definition of a digital twin in an attempt

to improve physical model simulation of spacecrafts [8].

Nowadays digital twins are integrated digital tools that allow the continuous improvement of a given

product or process from a global or end-to-end perspective. They currently mainly correspond to either

computer aided design tools (CAD), focusing on geometrical representations of a system, or to model-

based systems engineering tools (MBSE), dealing with functional-oriented models of a system. But,

these approaches are not providing the full potential of a “real” digital twin: first of all, simulation and

predictive CAD and MBSE capabilities are still very poor, which limits their business benefits; moreover,

it is also difficult to connect the geometrical & functional representations of a system (see Figure 1),

since these two paradigms were just not thought to work together, which leads in practice to silo-ed

geometrical & functional digital twins, at the opposite of the idea underlying this concept.

Figure 1 – Geometric and functional representations of a given system, here an electrical toothbrush

We think that this situation is mainly coming from the fact that geometry is usually the starting point

of the current digital twin approaches among the industry. Geometry is indeed well suited to support

physical simulations related to various types of energy interactions with a given system. But geometry

is quite badly adapted when one wants to deal with cost, quality, delay and/or business performances

of a system, that can be much more easily addressed by a functional approach, which moreover could

also be used as an entry point to physical simulations based on system geometrical representations.

This explains why our approach to digital twins, as presented here, is based on functional modeling

fundamentals since we do believe that this is the only right way to deal with digital twins.

However, most of the current functional-based tools are not satisfactory at all from a digital twin

perspective, since they just lack simulation capabilities. This is fundamentally due to the fact that these

tools are based on purely syntactic descriptions of a system, without any underlying formal—in its

mathematical meaning—semantics [12]: one indeed knows since a long time that simulating in an

unambiguous way a syntactic description of a system requires a mathematical equivalence between a

denotational and an operational semantics for such as system. The lack of such semantic foundations

jeopardizes most of the existing functional-oriented approaches towards digital twins. This is why we

3

decided to avoid this problem by choosing an underlying formal approach to digital twins, though not

visible from the end-user in order to remain as pragmatic as possible, exactly as software programmers

do not have to know (formal) semantics of programming languages to do software programming.

We also think that it is also crucial, especially when dealing with enterprise digital twins which is the

specific focus covered by this paper and by the WorldLab and  approach that we are developing, to

take uncertainty into account as a core feature of any enterprise. Any variable naturally associated

with an enterprise, for instance the number of monthly users of a service or the number of annual

buyers of a product, has indeed not a fixed value, but shall rather be considered as a random variable

with some specific probability distribution (see for instance Figure 2). This explains why we chose a

stochastic modeling approach for our enterprise digital twins which can be seen as an adaptation in

this new context of the classical similar approaches used in system safety [3].

Figure 2 – Example of a Normal probabilistic modeling of the number of products sold per year by an industrial company
(each blue bar corresponding to a different type of product of a same family)

The above discussion on uncertainties leads to two fundamental features of an enterprise digital twin,

as we envisioned it. First, it consists not only of a model of the considered system, or a series of models,

but also of operational data. In this last matter, we propose here a Bayesian approach: at first, data

may be scarce or relying on expert judgement for the most part. These preliminary data can then be

refined by feedbacks from experience, resulting from system operations. The digital twin also aims at

being continuously improved along the life cycle of a given industrial system: strictly speaking, it learns

from operations. Artificial intelligence techniques will be used to support the extraction of relevant

indicators as well as, more technically, during simulations. In a second direction, a digital twin does not

aim at predicting “the” actual future of the system. Rather, it is a way to explore its possible evolutions.

With that respect, we believe that decision making in complex socio-technical systems has much to do

with risk analysis: decision makers need to assess possible scenarios of evolution (at least the main

ones), to evaluate their likelihood and their potential impacts on enterprise operations, and eventually

make decisions. A digital twin is then an advanced tool to support strategic decisions making, and to

adjust a business strategy according to the dynamic evolution of the considered system environment.

This short paper intends therefore to present our approach to digital twins which integrates all core

features that we just sketched here above. It is organized in two main sections, which are respectively

dedicated to the specific principles of the so-called systemic digital twin approach that we are following

and to the description of the systemic digital twin design, developing and use process that we propose,

followed by a short conclusion highlighting the key benefits that are obtained in this way.

4

2. Principles of systemic digital twins

We already discussed some key features of our digital twin philosophy, that is to say the functional-

based approach with formal fundamentals and the stochastic modeling paradigm that we propose. A

last key feature of our approach is the systemic vision on which it relies, as popularized by Sterman in

the context of enterprise modeling [11], that we shall now present.

2.1 Systemic digital twins

As already stated, we are indeed specifically proposing a systemic digital twin approach. This means

that, contrarily to many digital twin toolsets, we are not interested by principle to construct a perfect

detailed digital clone of a given enterprise: we rather want to propose adequate digital tooling to allow

deciders to take their most important strategic and/or operational decisions, for instance choosing the

optimal way of working for engineering, supply chain & sourcing organization, maintenance strategy

or service policy, which can usually not be optimized locally, but request a global end-to-end approach.

This is why we are speaking of systemic digital twins since to address these typical issues, one needs

to take a systemic approach, as classically proposed by systems engineering (see [1], [4], [5] or [10]),

but applied here in enterprise contexts rather than in product development contexts. As already

stated, such an approach was especially proposed by the MIT group of Sterman, as synthesized in his

famous textbook on business dynamics [11] (see for instance Figure 3).

Figure 3 – Example of a systemic model, here for modeling a supply-chain strategy, proposed by Sterman

While the philosophy of our digital twin approach is the same than Sterman’s one, the main difference

with this last approach stands in the underlying mathematical modeling of the enterprise system

behaviors. Sterman uses only differential equations in this matter, when we do not think that it is a

good choice for two main reasons: the first one is that enterprises are fundamentally discrete events

systems whose behaviors are not well captured by continuous modeling, the second one is that

differential equations are generally speaking very sensitive to small variations of initial conditions and

so they are not the best tool to simulate accurately complex enterprise behaviors. This is why we

choose here a discrete approach to enterprise modeling since it seems both more realistic and more

accurate in terms of simulation. Note also that, technically, discrete event simulations are also much

less computational resources consuming than solving differential equations as it makes it possible to

let the time progress with long jumps rather than with small time intervals. Finally, it is much simpler

to develop good semantic fundamentals with this approach since classical results [12] can then be

more easily adapted in such a framework.

5

2.2 WorldLab and 

It is now time to introduce WorldLab and  which are the software tools on which our systemic digital

twin approach is based. First of all, WorldLab is the name of the software environment that we are

using for managing systemic digital twins. It can be seen as the equivalent of a software engineering

workshop for enterprise models instead of software programs. WorldLab indeed allows both to model

an enterprise, based on the specific  modeling language that we will introduce soon, and to simulate

immediately – based on a compiling approach—these enterprise models with .

An overview of the WorldLab architecture is provided by Figure 4. This software platform has two main

layers: the first is a data layer where natural environment, societal, governance, financial and economic

data, continuously collected, transformed and organized from public and corporate data sources, are

available for enterprise modeling & simulating purposes; the second layer specifically offers enterprise

modeling & simulation capabilities, based on the  modeling language, where enterprise modeling

specialists can, on one hand, develop enterprise models, reusing & adapting, when relevant, existing

models, and, on the other hand, simulate these enterprise models in order to compute a number of

predefined analytic syntheses that can be used to make business decisions. WorldLab shall therefore

be seen as a tool suite dedicated to build systemic digital twins. At this point, note also that WorldLab

is based on the same kinds of principles than the 20-year-old AltaRica model-based safety technology

(see [3] or [9]) from which it inherits both a number of key features and its industrial robustness.

Figure 4 – WorldLab architecture overview

Note that the data and the models managed and proposed by the WorldLab platform are organized

according to a standard world model that was initiated through the seminal paper [2]. In this specific

world model, named according to the CESAM methodology [5] with which it was constructed, the

world system is decomposed into five main sub-systems: 1) the natural environment formed of all

natural resources that are involved in human activities, 2) the human population, who – by the way –

is currently stressed by the covid-19 coronavirus, 3) the economical system formed of all economical

entities in the world, 4) the governance system formed of all state political & regulatory entities on

Earth, 5) the financial market that we will not consider as part of the economic system. Each of the

main subsystems of the CESAM world model can be decomposed according to a standard breakdown

structure as depicted in the below Figure 5, which provides a useful & relevant classification framework

for enterprise modeling specialists. If we are limiting the analysis to the main actors which concentrate

wealth and size, the human society does in particular not appear so complex since there are only

around 100,000 key actors to take into account in order to capture and understand the world system

6

dynamics! Note also that the main concrete actors (companies, countries, governing bodies, etc.) are

appearing quite quickly at level 3 or 4 of our system breakdown.

Figure 5 – Structure of the CESAM world model

The core part of WorldLab is of course the  language which is presented in details in [5]. We shall

point out here that  is a modeling language especially dedicated to systems dynamics, i.e., to the

simulation of dynamic evolution of technical and socio-technical systems, with of course a special focus

on enterprises. Although it involves several concepts borrowed from object-oriented programming

languages such as C++ or Python, and prototype-oriented programming languages such as JavaScript,

 differs from these languages in two fundamental respects:

• first, it is used to design models and not programs: once designed, models can be assessed by

means of various tools, notably by means of stochastic simulation;

• second, conversely to programming languages, it embeds the notion of time and distinguishes

instructions that take no time, and processes that take an explicitly specified time.

In this last matter,  was also inspired by synchronous languages which are managing sequences of

data among time [7]. The main difference however comes from the fact that  can manage random

variables distributed according to explicit probability distributions and also time series associated with

arbitrary time slots. Note moreover that, eventually, a model in  describes a set of processes running

in parallel, and modifying data structures that represent the state of the system under study. This last

property especially allows to model deformable systems whose structure may evolve along time.

To illustrate how  practically works, one can find in Figure 6, a very simple example of a model in 

where we modelled the world gold ecosystem as the union of Earth, gold corporations and gold users.

The Earth provides gold resources with an initial value of 50,000 tons of gold according to the current

estimates. Gold corporations extract gold ore as long as there is gold on Earth and produce gold every

year, if they have stocks of ore to do so, these two business processes – referred as “activities” in  –

being operated in parallel within one year duration. Gold consumers buy gold at their own rhythm,

which increases their stocks of gold, currently amounting to 190,000 tons, but of course they cannot

buy more than available in producer stocks. Note that the  model provided in the previous figure

models the annual production of gold and the new demands for gold through normal distributions, via

the “normalDeviate” operator, having roughly similar distributions, as observed on the market, which

allowed us to illustrate a typical use of the normal deviation operator. To be more realistic, we could

of course introduce dedicated functions to estimate the evolution of gold supply and demand.

7

Figure 6 – Example of a model in 

system GoldEcosystem
 system Earth … end
 system GoldCorps … end
 system GoldUsers … end
end

system GoldEcosystem.Earth
 float GoldResources (init = 5*e+4, unit = t);
end

system GoldEcosystem.GoldCorps
 float GoldCorpStocks (init = 0, unit = t);
 float GoldYearlyProduction (init = 0, unit = t);
 float GoldOreStocks (init = 0, unit = t);
 float GoldYearlyExtraction (init = 0, unit = t);
 bool ProducingGold(init = false);
 bool ExtractingGold(init = false);

 activity ExtractGold
 trigger:
 return main.Earth.GoldResources > 0 and ExtractingGold = false;
 start: {
 ExtractingGold = true;
 GoldYearlyExtraction = min(main.Earth.GoldResources, normalDeviate(2000,100));
 main.Earth.GoldResources = main.Earth.GoldResources – GoldYearlyExtraction; }
 completion:
 ExtractingGold = false;
 GoldOreStocks += GoldYearlyExtraction;
 duration:
 return 1; // year
 end

 activity ProduceGold
 trigger:
 return GoldOreStocks > 0 and ProducingGold = false;
 start: {
 ProducingGold = true;
 GoldYearlyProduction = min(GoldOreStocks, normalDeviate(1750, 150));
 GoldOreStocks = GoldOreStocks - GoldYearlyProduction; }
 completion: {
 ProducingGold = false;
 GoldCorpStocks += GoldYearlyProduction;
 }
 duration:
 return 1; // year
 end
 end

system GoldEcosystem.GoldUsers
 float GoldUserStocks (init = 1.9*e+5, unit = t);
 float GoldYearlyNewDemand (unit = t);
 bool PurchasingGold (init = false);

 activity PurchaseNewGold
 trigger:
 return not PurchasingGold and GoldCorpStocks > 0;
 start: {
 PurchasingGold = true;
 GoldYearlyNewDemand = normalDeviate(1800,200);
 Main.GoldCorpStocks -= min(main.GoldCorpStocks, GoldYearlyNewDemand); }
 completion: {
 PurchasingGold = false;
 GoldUserStocks += GoldYearlyNewDemand;
 }
 duration:
 return 1; // year
 end
 end

8

Note also that a choice had to be made whether the transaction was to be seen from a user point of

view (purchasing) or a corporate point of view (sales), which both remain equivalent in terms of

systemic modeling.

Finally, one can also see here the main difference between programming and modeling: even if  looks

like a programming language, it is fundamentally different, the main difference coming from a

pragmatic requirement which does not exist in programming: the key point when designing a model

in  is indeed to capture reality as well as possible, which is totally specific to modeling and moreover

cannot be really formalized. Modeling remains therefore still an art …

2.3 Systemic digital twin management process

Managing the systemic digital twin of an enterprise with the support of WorldLab and  can be

achieved through a standard process that we shall now quickly present.

Figure 7 – Overview of the systemic digital twin management process

This digital twin management process has three main phases, respectively focused on designing,

developing, and using a systemic digital twin associated with a given enterprise, whose contents are

sketched here below:

• Phase 1 – design: this first phase intends to prepare the core foundations on which a systemic

digital twin shall be built: it starts by clarifying the business problem that the targeted systemic

digital twin intends to solve, which is key since this initial step will provide the core orientation

to give to a systemic digital twin; the next steps consist then in identifying the enterprise

system scope that shall be analyzed through a functional systemic enterprise model, that will

be later be translated in the  language, when stabilized;

• Phase 2 – development: the second phase consists then in developing a model using the 

language within the WorldLab platform: one shall here begin by using the material provided

by the first phase in order to specify the key systemic variables & data that will be manipulated

in ; in a second step, one shall develop the model in  for the considered enterprise, which

9

form the kernel of the digital twin, before creating the relevant enterprise decision-support

dashboards & alerts that shall help to solve the initially identified business problem;

• Phase 3 – use: the last phase is finally a business phase where one shall first create & simulate

the enterprise evolution scenarios to study, then analyze the simulation results & alerts and

propose on that basis relevant business recommendations; at the very end, a last step is

dedicated to installing the systemic digital twin as an operational tool in the organization,

leading to continuous business improvement through regular evolution scenario creation and

associated simulations, analyses & alerts, and possibly revisions of the model in .

A synthetic presentation of this process can also be found in Figure 7. Note finally that the next section

is eventually dedicated to a step-by-step detailed visit of this process on a case study, which explains

why we are not eliciting it more in details here.

3. Designing, developing & using a systemic digital twin in practice

We shall now show how to design, develop and use in practice a systemic digital twin with WorldLab

and , through a case study that was constructed by anonymizing and simplifying a real industrial

company case on which we worked. We indeed wanted here to be both realistic and not too complex,

in order to remain simple, without being simplistic. In this matter, let us therefore introduce the e-TB

company which is a high-tech enterprise that produces, at demand for industrial customers within a

B2B model, electronic toothbrushes which are formed of three logical components, that is to say a

base, a head and a body, as described in Figure 8.

e-TB designs each toothbrush depending on the needs of its customers as captured by salespersons,

sources then amongst pre-selected suppliers the base, head and body components that are answering

to these needs, and assembles afterwards all these components altogether on its assembly line, before

delivering the final products to its customers. Since e-TB is highly committed on having a time-to-

delivery delay as short as possible, marketing tries to anticipate the volumes of components that will

be required per quarter, based on an analysis of market data and real sales & manufacturing data.

Based on this marketing analysis, anticipated base, head and body components are then bought in

advance and stored within e-TB warehouses. This policy makes components available, with only a 1-

day delay, when a customer request has to be fulfilled.

Figure 8 – Logical structure of the electronic toothbrushes produced by e-TB

However, this strategy may fail when marketing anticipations are not accurate. In this situation, there

are then uncompressible delays for producing from scratch the missing specific components that are

answering to the actual customer needs, since they were not stored. In such context, the associated

sourcing delays – including storing – per component are provided in the table below.

10

Component Sourcing & storing delay

Base 2 months

Head 1 month

Body 1 month

Figure 9 - Sourcing & storing delays per component when one has to produce them from scratch

These elements of context being recalled, let us now see how an associated systemic digital twin can

be designed, developed, and used to support e-TB time-to-delivery optimization strategy.

3.1 Phase 1: designing the systemic digital twin

The very first phase towards a systemic digital twin for e-TB is the design phase. Its purpose is to scope

the future e-TB systemic digital twin by constructing a first informal model of e-TB, which shall be

challenged & validated before going to the next  modeling phase. The key point to have in mind is

that it is not possible to go to the formal modeling phase before having stabilized our understanding

of e-TB, which may take some time due to the many interactions and feedbacks that one needs to do

with and to capture from e-TB actors. Since the e-TB model will fundamentally be unstable during this

phase, we are thus using here informal modeling tools which are well adapted to this situation.

Step 1.1: clarifying the business problem to solve

The starting point of our process consists in clarifying the business problem that e-TB wants to solve.

One shall indeed never construct a systemic digital twin for the pleasure of constructing a systemic

digital twin: it shall always answer to a specific business problem whose business specificities shall

normally highly guide the design of the systemic digital twin.

In our case, it happens that e-TB is a time-to-delivery oriented company as already stated. However,

we could see in the introduction of this section that the way e-TB is organized in order to achieve the

best possible time-to-delivery of its products is not optimal since delivery time can just be very bad,

up to 2 months of delay, when marketing anticipations are not accurate, resulting in the lack of some

key components in e-TB warehouses that may however be mandatory in order to answer to some

specific customer needs. Moreover, the e-TB time-to-delivery policy has also a bad side effect: e-TB is

indeed obliged to overstore the components in its warehouses in order to increase the probability of

finding there the right components when a given customer requires them, knowing experimentally

that component figures anticipated by the marketing are wrong. In other words, e-TB buys delivery

time with storing space. But this policy unfortunately results in lots of overstored electronic toothbrush

components at the end of each year. e-TB must then regularly destroy them since they are quickly not

anymore adapted to the market which evolves at a very rapid pace in the e-TB high tech business. The

cost of such over storage, mainly due to the difficulty of having accurate marketing predictions, is quite

high and reaches more than 10 million euros per year, which are just lost each year by e-TB. It is thus

quite key to find the best possible balance between time-to-delivery and levels of warehouse stocks.

Consequently, we can see that the business problem that e-TB has to solve is to find the best way of

working that will allow the company to minimize both the customer delivery time and the component

storage volume of its electronic toothbrushes. We were therefore able to express the business problem

of e-TB in terms of an optimization problem, which clarifies it quite well.

Step 1.2: identifying the enterprise system scope

The second step of the design phase consists in creating a system vision of the e-TB company. The

associated deliverable shall thus be a system logical interaction diagram for the considered enterprise,

11

i.e., a diagram describing both the system / logical breakdown of the perimeter of e-TB which matters

for the problem that we want to solve as identified in step 1.1, the associated relevant stakeholders,

and the internal & external exchanges that they are managing. The resulting typical deliverable is

presented in Figure 10 for the e-TB case study.

Figure 10 – System logical interaction diagram for e-TB company

This deliverable is obtained by identifying first the main organizational parts of the e-TB company that

have to deal with the time-to-delivery and storage optimization problem that we have to address. The

first obvious such parts can be easily obtained by analyzing the e-TB customer to customer end-to-end

delivery process: this process starts with a sales part where the sales division of e-TB captures the

customer needs, as stated by the customer. Then, it transforms these needs into toothbrush initial

requirements. The latter may however not be totally complete/satisfactory from a technical point of

view. The process then goes on by a design part where a product designer from the e-TB design division

analyses the toothbrush initial requirements and defines the toothbrush final technical requirements,

taking especially into account the current availability of components. This may lead to replacing

ordered components by similar components, leading then both to component requests to the sourcing

& storing division of e-TB and to toothbrush production requests to the e-TB manufacturing & delivery

division. The latter will eventually deliver the expected electronic toothbrushes to the customer.

To complete the analysis, one has of course to integrate in the picture the marketing division of e-TB

which plays a key role since it shall send each quarter anticipated component volumes to the sourcing

& storing division of e-TB, based initially on market data at the beginning of each year and updated

each quarter based on the actual sales, design & manufacturing data. Note also that one shall not

forget the external stakeholders, here customers, market and suppliers, with which e-TB has external

exchanges. In this matter, the new exchanges that one must add to complete the picture are just the

exchanges – of component requests & components – that the sourcing & storing division of e-TB has

with its suppliers and that we did not trace up to now (see Figure 10 for the final deliverable).

Step 1.3: constructing a functional systemic enterprise model

The next and last step of the design phase consists in enriching the enterprise vision that was captured

in the previous step with a functional point of view. In other words, it consists in refining the previous

12

analysis by identifying all the business processes associated with the various e-TB divisions, that are

relevant with respect to the business problem that we want to address here. The associated typical

deliverable is illustrated in Figure 11 for the e-TB case.

Figure 11 – Functional systemic model of e-TB aligned with its system breakdown

As one sees, we just completed the system logical interaction diagram obtained in step 1.2 by eliciting

the underlying business processes. In our case, most of the e-TB divisions that matter are only involved

through one single business process: “anticipate market needs” for the marketing division, “sell

toothbrushes” for the sales division, “design toothbrushes” for the design division and “assemble &

deliver toothbrushes” for the manufacturing & delivering division. In this last matter, note that we

grouped together the “assemble toothbrushes” and “deliver toothbrushes” business processes since

the deliver process – which is quite efficient and stable in the e-TB case—has practically no impact at

all, both on the time-to-delivery durations and on the storage volumes. Finally, we were naturally led

to introduce six business processes within the sourcing & storing division of e-TB: on a first hand,

“source & store heads”, “source & store bodies” and “source & store bases” since these processes are

of course independent and, as so, each of them can have a different & potentially huge impact on the

two key performance indicators – time-to-delivery and storage volume—of interest and, on a second

hand, the associated destocking processes, i.e. “destock heads” “destock bodies” and “destock bases”.

At this point, we now have a complete vision from an overall system perspective – even if still quite

informal – of the key e-TB architectural static elements, both in terms of stakeholders, main internal

enterprise divisions, internal & external exchange flows and business processes, with respect to the

time-to-delivery and component storage volume optimization problem that we shall address.

3.2 Phase 2: developing the systemic digital twin

The second phase consists in developing the systemic digital twin of e-TB using WorldLab and . This

core phase is the most technical since one has here to manage both the variables & data, the formal

model and the decision-support dashboards & alerts that are the key constituents of the e-TB systemic

digital twin. Note that one may need to come regularly back to this phase for managing evolutions or

adaptations of the e-TB systemic digital twin in a continuous improvement business perspective.

13

Step 2.1: specifying enterprise systemic variables, data and activities

In this second development phase, the very first step is dedicated to the identification & calibration of

all variables & data that will be managed by the e-TB systemic digital twin. We need in particular first

to understand more in details the exchanged variables that appeared—and were abstracted—in the

functional systemic enterprise model defined in the last previous step.

Figure 12 – Annual e-TB electronic toothbrush sales per rotating performance

Let us start therefore by looking more precisely on the electronic toothbrushes that are manufactured,

as a main mission, by e-TB, since all the flows exchanged between the various e-TB business processes

identified in step 1.3 are dependent of the nature of the produced electronic toothbrushes. In this last

matter, it happens that e-TB is in fact producing two different types of electronic toothbrushes, the

low-cost ones and the premium ones, that one can in particular technically differentiate through the

range of their rotating speeds, which have their own independent business dynamics. One can indeed

see from the annual sales statistics of e-TB (see Figure 12) that the sales distributions of low-cost and

premium products per rotating speed are quite different, the first following a normal truncated law

when the second has a usual normal distribution. Consequently, we must introduce specific variables

that are taking into account this situation. As an example, one can typically see that the total amount

of electronic toothbrushes produced by e-TB per unit of time is not a good systemic variable, since it

abstracts too much the reality of the e-TB business, even if it is a good performance indicator for e-TB:

this variable is indeed the sum of the two similar variables, respectively associated with low-cost and

premium products, which are therefore the relevant systemic variables to consider. Note also that one

will have to introduce in the same way specific variables for describing the components that are

specifically used, either for low-cost, or premium electronic toothbrush construction.

One can now pass to the identification of the systemic variables associated with e-TB. In this matter,

one has to review the main systems involved in the e-TB ecosystem – which groups both the market,

the customers and all types of suppliers – and the marketing, sales, design, sourcing & storing and

manufacturing & delivering divisions of e-TB, as synthetized in phase 1, in order to define the relevant

systemic variables associated to these various ecosystem & enterprise systems. The result of this

systemic variable review for e-TB is provided in the below table (see Figure 13).

The next step will then be to identify, when relevant, the initial values of these systemic variables and

the data sources from which they can be taken, again when relevant. Here most of the e-TB systemic

variables are triggered by customer demands that are not fixed: they shall then have a zero initial value

which means that we shall only consider and measure them from the start of the systemic digital twin

simulation process. The other variables that may be initialized in a different way are the quarterly

anticipated electronic toothbrushes and the number of stored components, that we shall put to the

initial values of these variables at the date chosen as the reference starting date of the systemic digital

14

twin life. In terms of data sources, one has of course to know where one can find these data in order

to be able to compare and to regularly reconciliate their estimated and actual values.

System Systemic variable

Customers Low-cost ordered toothbrushes
Premium ordered toothbrushes

Marketing Low-cost quarterly anticipated toothbrushes
Premium quarterly anticipated toothbrushes

Sales Low-cost sold toothbrushes
Premium sold toothbrushes

Design Low-cost designed toothbrushes
Premium designed toothbrushes

Sourcing & storing Low-cost stored body components
Premium stored body components
Low-cost stored head components
Premium stored head components
Low-cost stored base components
Premium stored base components

Manufacturing & delivering Low-cost manufactured toothbrushes
Premium manufactured toothbrushes

Figure 13 – Systemic variables associated with all systems involved in e-TB company ecosystem

Systemic variables can be seen as stocks. Each actor owns a number of stocks. For instance, the sub-

system Customers owns two stocks of ordered toothbrushes (one for low-cost, the other one for

premium toothbrushes), the sub-system Marketing owns a stock of low-cost quarterly anticipated

toothbrushes and so on. The notion of stocks should thus be taken here in a broad sense, i.e. quantities

of interest for the business processes under study.

Activities of the various actors modify these stocks. In order words, they describe flows between

stocks. For instance, the activity “sell toothbrushes” of the sub-system Sales increases its stocks of sold

low-cost and premium toothbrushes, accordingly to the increasing of the stocks of ordered low-cost

and premium toothbrushes of the sub-system Customers: in other words, it is synchronized with the

activity “buy toothbrushes” of the sub-system Customers that we may also introduce.

At this point, several remarks should be made.

First, some activities are constrained by the availability of material or organizational resources. For

instance, the production capacity of the provider(s) of toothbrush components may be limited. Such

quantities are not variables stricto sensu as their values do not change during a given simulation (but

may change from one simulation to the other). Rather, they are parameters. These parameters are

specifically monitored as so, both in  and at WorldLab platform level.

Second, the result of activities may not be fixed, but rather vary according to some statistical

distribution. For instance, the quantity of low-cost and premium toothbrushes sold every day by the

Sales department may vary depending on the season or within the month. In , there are two ways to

describe such distributions: either by means of built-ins encoding of some widely used distributions

such as – for instance – the normal, exponential, or Weibull distributions, or by means of externally

defined distributions, so-called empirical distributions, concretely given in external files as set of

points. Empirical distributions provide a direct link with field data.

Third, as already pointed out, activities of the various actors are performed in parallel, possibly at

different paces. Each activity has thus its own duration. Consequently, one shall not forget to elicit the

time features of each e-TB ecosystem business process (see the table of Figure 14 for the results in the

15

e-TB case of this last activity). Note that no duration values are provided for the “buy toothbrushes”

process since we do not have insight on it. However, it is not so important since each “buy” process of

the customers will be synchronized with the associated “sell” process at e-TB level, which of course

has also to be captured in . As for results of activities, durations can be either deterministic or obey

some statistical distribution.

Business process Duration delay Duration unit

Buy toothbrushes Non available Non available

Anticipate market needs 1 quarter

Sell toothbrushes normal-deviate(10,5) day

Design toothbrushes normal-deviate(5,2) day

Assemble & deliver toothbrushes 5 day

Source & store heads 1 month

Destore heads 1 day

Source & store bodies 1 month

Destore bodies 1 day

Source & store bases 2 month

Destore bases 1 day

Figure 14 – Durations of e-TB ecosystem business processes

Fourth, each activity is started when, or more exactly as soon as, a certain condition on stocks is

verified. This for two reasons: first, there may be not enough available resources, or on the contrary

too many products, to start an activity. For instance, there is no need for the Marketing to buy new

toothbrushes components if the stocks are filled enough. Second, once an activity started, it is in

general not possible to start a new instance of the same activity until the activity is not completed. The

actor can be seen here as the resource that is required to perform the activity. Describing the triggering

condition of each activity is thus an important part of the modeling process.

Fifth, given what we just said, activities modify the state of the system – i.e. in a first approximation

the values of stocks – twice: when they are started, to mobilize the resources they need to be

performed and at their completion, as the result of their execution.

The description of stocks and activities, and for activities their triggering conditions, actions at start

and at completion, and durations, is the process by which the informal model is transformed into a

formal one. Once this description is achieved, writing down the  model becomes, to some extent,

“just a matter of technique”. This is not completely true however as the process by which both the

informal and the formal models are designed are iterative and may depend on performance issues of

assessment tools. For instance, it may be tempting to iterate an activity 24 times a day for the sake of

accuracy, but in practice it may be better to consider it as a single daily activity. Moreover,  is a full-

fledged prototype- and object-oriented language. Consequently, it provides elegant and efficient ways

of representing concepts, which ease the authoring and the maintenance of systemic models. It is thus

often the case that the  model is not a bare encoding of the informal model. Rather, it helps to

structure further the analysis and to capture commonalities within the informal model and with

previously developed models. In a word, the translation of the informal model into a formal one leads

often to refining the informal model.

Step 2.2: developing the model in 

We now have everything in hands for constructing the model for e-TB in . The skeleton of such a

formal model can be first quite obviously derived from the informal model elaborated during the first

phase and from the various elements defined in the previous step 2.1. The beginning of the skeleton

16

of the e-TB formal model in  is provided in Figure 15. At this stage, it is just – as one can see here – a

syntactic translation in the  language of the modeling material that we obtained so far, activities

excluded. The objective of this first phase is to allocate systemic variables (stocks) to sub-systems and

to check that the overall architecture of the system has been correctly captured.

system eTBEcosystem
 system Customers ... end
 system Sales ... end
 system Design ... end
 system SourcingStoring ... end
 system ManufacturingDelivering ... end
 system Marketing ... end
end

system eTBEcosystem.Customers
 int lowCostOrderedToothbrushes(init = 0);
 int premiumOrderedoothbrushes(init = 0);
end

system eTBEcosystem.Sales
 int lowCostSoldToothbrushes(init = 0);
 int premiumSoldToothbrushes(init = 0);
end
 …

Figure 15 – Skeleton of the e-TB model in 

We are now ready to develop the full model in  of our enterprise. In the e-TB case, this shall lead us

to develop formal descriptions of the behaviors of each part of the e-TB ecosystem, as defined in the

very first breakdown assertion of the model in  (see Figure 15). As an illustration, Figure 16 shows the

full description of the sub-system Sales and its activity “SellToothbrushes”.

system eTBEcosystem.Sales
 int lowCostSoldToothbrushes(init = 0);
 int premiumSoldToothbrushes(init = 0);
 bool selling(init = false);
 parameter float meanSaleDuration = 10;
 parameter float stddevSaleDuration = 5;

 activity SellToothBrushes
 trigger: return not selling;
 start: selling = true;
 completion: {
 int lowCostVolume, premiumVolume;
 lowCostVolume = empiricalDistribution(“Data/LowCostToothBrushesSalesData.csv”, linear);
 premiumVolume = empiricalDistribution(“Data/PremiumToothBrushesSalesData.csv”, linear);
 main.Customers.lowCostOrderedToothbrushes += lowCostVolume;
 main.Customers.premiumOrderedoothbrushes += premiumVolume;
 lowCostSoldToothbrushes += lowCostVolume;
 premiumSoldToothbrushes += premiumVolume;
 selling = false;
 }
 duration: min(1, normalDeviate(meanSaleDuration, stddevSaleDuration)); // days
 end
end

Figure 16 – Full description of the sub-system Sales in 

This model fragment intends here to capture the buy-sales relationships within e-TB ecosystem. One

can in particular observe that it refers to two empirical distributions and one pair (meanSaleDuration,

stddevSaleDuration) of parameters. The empirical distributions, which are loaded from .csv files,

describe the volumes of low-cost and premium toothbrush sold over the time. These two datasets are

17

typically obtained by experience feedback, possibly corrected by business expert judgement. The two

parameters (meanSaleDuration, stddevSaleDuration) are used as inputs for a given normal distribution

modeling the duration of the sale process. They can be modified prior to each simulation, so to study

the impact of variations in the duration of the sale process. One can finally note that Boolean variables

are introduced as triggering conditions of every activity in order to ensure that there cannot be two of

the same activity occurring at the same time.

Note that developing the models in  is not an easy task. The  language is indeed highly constrained

in order to oblige the modeling expert to think in the right systemic way. Moreover, it is usually when

one arrives at this step that one will discover lots of gaps and missing items in the previous analyses,

which shall be seen as a key benefit of our formal approach.  does indeed not allow neither ambiguity,

nor approximations. Consequently, feedbacks of this new step on all the previous steps of the systemic

digital twin construction process are just normal. They shall be always welcomed by all the modeling

actors since they are key for constructing a robust systemic model.

Step 2.3: defining decision-support dashboards

Finally, the third and last step of the development of the systemic digital twin of e-TB using WorldLab

and  consists in defining – through a dedicated WorldLab interface – the decision-support dashboards

and alerts that will synthesize / manage the results of the simulations of our systemic digital twin.

In the e-TB case, the key performance indicators that we are interested in are the monthly distributions

of stored component volumes per type of components and time-to-delivery durations per type of

toothbrushes. Examples of possible associated decision-support dashboards are provided in the below

Figure 17. Note that the time-to-delivery is measured on the right-hand side diagram in a relative way:

e-TB indeed commits always on a given time-to-delivery with its customers during the sales phase,

which leads the company to measure the difference between the actual and the committed time-to-

delivery, which can be negative when e-TB is in advance or positive when e-TB is late, corresponding

to two dynamics with respect to time-to-delivery expressed in the two curves of our diagram.

Figure 17 – Examples of decision-support dashboard for e-TB

Note finally that such decision-support dashboards are of course computed through simulations of the

previous model developed in , where one needs therefore to put specific measurement instructions

for describing the measures to do during a simulation in order to feed these dashboards. Similar way

of working may also be done with respect to alerts that the systemic digital twin may manage.

18

3.3 Phase 3: using the systemic digital twin

Finally, the third and last phase towards a systemic digital twin for e-TB is the use phase. We are here

coming back to the business in order to help e-TB managers to take the right decisions, based on the

analyses of the e-TB evolution scenarios provided by the systemic digital twin simulations, in order to

solve the business problem identified at the very beginning of the process. This phase ends by installing

the e-TB systemic digital twin as a standard operational tool within the organization that shall support

continuous improvement of the enterprise on the initial business problem scope.

Step 3.1: creating & simulating enterprise evolution scenarios

The point is now to begin to use the systemic digital twin that we just constructed in order to solve the

initial business problem and to improve the business operations. In the e-TB case, we know that the

core problem to solve is to anticipate better the volumes of each body, head and base component

involved in the manufacturing of an electronic toothbrush. This is why e-TB has to start by simulating

the quarterly volumes of each component of its electronic toothbrushes. Such simulations are then

managed by instantiating the free parameters of the e-TB  model to different values, leading to

different simulation scenarios. One can typically simulate in this way the consequences of various

potential behaviours of the electronic toothbrush market for the e-TB company.

Figure 18 – Simulated quarterly sold volumes of an e-TB electronic toothbrush component

Figure 18 shows the result of such a simulation for the sold volumes of an e-TB electronic toothbrush

component during the first quarter of a year, here expressed in percent of the total yearly amount of

sold components, classified per increasing technical performance of the considered component, under

the assumption of a normal market behavior. We also indicated on that figure the normal distribution

that approximates the obtained simulation results.

Step 3.2: analyzing simulation results

The second step of the use phase consists in business analyses of the simulation results obtained in

the previous step. The systemic digital twin only plays here a supporting role since this new step is

fundamentally a business step which cannot be magically managed by a pure tooling approach. To

understand better this point, one may have a look on the below Figure 19 which illustrates a typical

business analysis that can be done on the basis of the simulation results provided by the last step, as

synthesized by Figure 18 in the e-TB case.

One can indeed see that when one clusters the considered components according to the clusters that

are highlighted in red in the left-hand side figure of Figure 18, the distribution of the clusters that one

obtains in this way are perfectly captured by a normal distribution. This observation may for instance

suggest rationalizing the e-TB component portfolio by choosing a reference component in each

identified cluster that will replace all existing components of a given cluster, leading for instance here

19

to 3 reference components in the example of Figure 19. Such a choice would indeed allow to cover the

market – which is driven by the component performance, used here as the core analysis axis – with

only 3 components instead of 6, which is a lever for both reducing the cost of these components since

having less components allows to get bigger volumes and lower prices from the component suppliers

and complexity of the corresponding component portfolio which would here be divided by 2.

Figure 19 – Possible rationalization of the analyzed electronic toothbrush component

As one can see, such an analysis is clearly a business analysis where the systemic digital twin “just”

provides the material to support such an analysis.

Step 3.3: managing continuous business improvement

Last, but not least, one may now integrate the systemic digital twin in the usual operational activities

of the e-TB company. In such a case, it means that one shall use the systemic digital twin to define the

best storage and time-to-delivery strategies and to monitor such strategies among time, in order to

achieve optimal stored component volumes and electronic toothbrush time-to-delivery. The below

Figure 20 shows for instance the comparison between the simulated (in red) and the actual (in green)

monthly sold volumes of an e-TB electronic toothbrush component among time. The relatively good

accuracy between estimation & reality – which is key to optimally manage the stocks of this component

– is of course obtained through a regular re-calibration of the systemic digital twin among time.

Figure 20 – Comparison of simulated & actual monthly sold volumes of an e-TB electronic toothbrush component

One shall thus not think that a systemic digital twin is a frozen tool. Any company is indeed a living

body which permanently adapts, changes and transforms itself, in order to maintain its alignment with

its business environment which evolves at its own independent pace. It is therefore key to integrate

over time these evolutions within the systemic digital twin that was constructed in order to support

continuous business improvements within the company where it was deployed. It is only through such

20

an intimate and long-term integration between the real business operations and the systemic digital

twin that such a tool will provide the expected business value along time.

4. Conclusion

In this short paper, we tried to present the motivations and the main features of our systemic digital

twin approach, especially focusing on the design, development and use processes of such a tool, which

are usually never highlighted in the literature. As one could see, our approach is based on a formal

modeling language –  – in the line of the classical AltaRica language for safety (see [3] and [9]). We

believe that this core choice brings fundamental benefits to the companies that use our approach,

both in terms of accuracy & correctness of their systemic digital twins, hence of business validity, and

ease of evolution & maintenance, hence of associated operating recurring costs.

There are of course many specific aspects of the proposed approach that require further detail and

elaboration. We would finally like to stress the very crucial importance of systems architecture when

constructing a systemic digital twin since this discipline enables the smooth integration of the various

disciplines that are all providing a piece of the complex puzzle of a given enterprise reality.

References

1. Blanchard B.S., Fabricky W.J., Systems Engineering and Analysis, Prentice Hall, 1998

2. De Weck O., Krob D., Li L., Lui P.C., Rauzy A., Zhang X.G., Handling the COVID-19 crisis: Toward an

agile model-based systems approach, Systems Engineering, Vol. 23, Issue 5, 656-670, 2020

3. Hastings C., Rauzy A., Foundations for Model-Based Systems Engineering and Model-Based Safety

Assessment, Systems Engineering, Vol. 22, Issue 2, 146–155, 2019

4. Kossiakoff A., Sweet W.N., Systems Engineering – Principles and Practice, Wiley Series in Systems

Engineering, 2003

5. Krob D., Model-Based Systems Architecting – Using CESAM to architect complex systems, ISTE and

Wiley, 2022

6. Krob D., Rauzy A., A Guided Tour of the Systemic Modeling Language , White Paper, Systemic

Intelligence Group, 2022

7. Marwedel P., Embedded System Design, Kluwer Academic Publishers, 2003

8. Negri E., A review of the roles of Digital Twin in CPS-based production systems, Procedia

Manufacturing, 11, 939–948, 2017

9. Prosvirnova T., Batteux B., Brameret P.-A., Cherfi A., Friedlhuber T., Roussel J.-M., Rauzy A., The

AltaRica 3.0 project for Model-Based Safety Assessment, In Proceedings of 4th IFAC Workshop on

Dependable Control of Discrete Systems, DCDS'2013, York, Great Britain, 127–132, 2013

10. Sage A.P., Armstrong J.E., Introduction to systems engineering, Wiley Series in Systems

Engineering, 2000

11. Sterman J.D., Business Dynamics – Systems Thinking and Modeling for a Complex World, Irwin

McGraw-Hill, 2000

12. Winskel G., The formal semantics of programming languages – An introduction, The MIT Press,

1997

