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1. Introduction 

A digital twin is a virtual representation of a system that serves as the digital counterpart of a concrete 

product – when the system of interest is such a product – or of a business process – when the system 

of interest is an enterprise – which can be used to simulate and predict the temporal evolution of the 

considered system. Note that an enterprise shall be taken here in the meaning provided by enterprise 

architecture, which refers to any set of hardware, software and/or human resources, put altogether 

to achieve some common mission. This is a quite large concept which captures in practice any part of 

a company. The concept of digital twin emerged during the last decade: to the best of our knowledge, 

it can be traced back to NASA which proposed in 2010 the first definition of a digital twin in an attempt 

to improve physical model simulation of spacecrafts [8].  

Nowadays digital twins are integrated digital tools that allow the continuous improvement of a given 

product or process from a global or end-to-end perspective. They currently mainly correspond to either 

computer aided design tools (CAD), focusing on geometrical representations of a system, or to model-

based systems engineering tools (MBSE), dealing with functional-oriented models of a system. But, 

these approaches are not providing the full potential of a “real” digital twin: first of all, simulation and 

predictive CAD and MBSE capabilities are still very poor, which limits their business benefits; moreover, 

it is also difficult to connect the geometrical & functional representations of a system (see Figure 1), 

since these two paradigms were just not thought to work together, which leads in practice to silo-ed 

geometrical & functional digital twins, at the opposite of the idea underlying this concept. 

 

Figure 1 – Geometric and functional representations of a given system, here an electrical toothbrush 

We think that this situation is mainly coming from the fact that geometry is usually the starting point 

of the current digital twin approaches among the industry. Geometry is indeed well suited to support 

physical simulations related to various types of energy interactions with a given system. But geometry 

is quite badly adapted when one wants to deal with cost, quality, delay and/or business performances 

of a system, that can be much more easily addressed by a functional approach, which moreover could 

also be used as an entry point to physical simulations based on system geometrical representations. 

This explains why our approach to digital twins, as presented here, is based on functional modeling 

fundamentals since we do believe that this is the only right way to deal with digital twins.  

However, most of the current functional-based tools are not satisfactory at all from a digital twin 

perspective, since they just lack simulation capabilities. This is fundamentally due to the fact that these 

tools are based on purely syntactic descriptions of a system, without any underlying formal—in its 

mathematical meaning—semantics [12]: one indeed knows since a long time that simulating in an 

unambiguous way a syntactic description of a system requires a mathematical equivalence between a 

denotational and an operational semantics for such as system. The lack of such semantic foundations 

jeopardizes most of the existing functional-oriented approaches towards digital twins. This is why we 
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decided to avoid this problem by choosing an underlying formal approach to digital twins, though not 

visible from the end-user in order to remain as pragmatic as possible, exactly as software programmers 

do not have to know (formal) semantics of programming languages to do software programming.  

We also think that it is also crucial, especially when dealing with enterprise digital twins which is the 

specific focus covered by this paper and by the WorldLab and  approach that we are developing, to 

take uncertainty into account as a core feature of any enterprise. Any variable naturally associated 

with an enterprise, for instance the number of monthly users of a service or the number of annual 

buyers of a product, has indeed not a fixed value, but shall rather be considered as a random variable 

with some specific probability distribution (see for instance Figure 2). This explains why we chose a 

stochastic modeling approach for our enterprise digital twins which can be seen as an adaptation in 

this new context of the classical similar approaches used in system safety [3].  

 

Figure 2 – Example of a Normal probabilistic modeling of the number of products sold per year by an industrial company 
(each blue bar corresponding to a different type of product of a same family) 

The above discussion on uncertainties leads to two fundamental features of an enterprise digital twin, 

as we envisioned it. First, it consists not only of a model of the considered system, or a series of models, 

but also of operational data. In this last matter, we propose here a Bayesian approach: at first, data 

may be scarce or relying on expert judgement for the most part. These preliminary data can then be 

refined by feedbacks from experience, resulting from system operations. The digital twin also aims at 

being continuously improved along the life cycle of a given industrial system: strictly speaking, it learns 

from operations. Artificial intelligence techniques will be used to support the extraction of relevant 

indicators as well as, more technically, during simulations. In a second direction, a digital twin does not 

aim at predicting “the” actual future of the system. Rather, it is a way to explore its possible evolutions. 

With that respect, we believe that decision making in complex socio-technical systems has much to do 

with risk analysis: decision makers need to assess possible scenarios of evolution (at least the main 

ones), to evaluate their likelihood and their potential impacts on enterprise operations, and eventually 

make decisions. A digital twin is then an advanced tool to support strategic decisions making, and to 

adjust a business strategy according to the dynamic evolution of the considered system environment. 

This short paper intends therefore to present our approach to digital twins which integrates all core 

features that we just sketched here above. It is organized in two main sections, which are respectively 

dedicated to the specific principles of the so-called systemic digital twin approach that we are following 

and to the description of the systemic digital twin design, developing and use process that we propose, 

followed by a short conclusion highlighting the key benefits that are obtained in this way.  
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2. Principles of systemic digital twins 

We already discussed some key features of our digital twin philosophy, that is to say the functional- 

based approach with formal fundamentals and the stochastic modeling paradigm that we propose. A 

last key feature of our approach is the systemic vision on which it relies, as popularized by Sterman in 

the context of enterprise modeling [11], that we shall now present. 

2.1 Systemic digital twins 

As already stated, we are indeed specifically proposing a systemic digital twin approach. This means 

that, contrarily to many digital twin toolsets, we are not interested by principle to construct a perfect 

detailed digital clone of a given enterprise: we rather want to propose adequate digital tooling to allow 

deciders to take their most important strategic and/or operational decisions, for instance choosing the 

optimal way of working for engineering, supply chain & sourcing organization, maintenance strategy 

or service policy, which can usually not be optimized locally, but request a global end-to-end approach.  

This is why we are speaking of systemic digital twins since to address these typical issues, one needs 

to take a systemic approach, as classically proposed by systems engineering (see [1], [4], [5] or [10]), 

but applied here in enterprise contexts rather than in product development contexts. As already 

stated, such an approach was especially proposed by the MIT group of Sterman, as synthesized in his 

famous textbook on business dynamics [11] (see for instance Figure 3).  

 

Figure 3 – Example of a systemic model, here for modeling a supply-chain strategy, proposed by Sterman 

While the philosophy of our digital twin approach is the same than Sterman’s one, the main difference 

with this last approach stands in the underlying mathematical modeling of the enterprise system 

behaviors. Sterman uses only differential equations in this matter, when we do not think that it is a 

good choice for two main reasons: the first one is that enterprises are fundamentally discrete events 

systems whose behaviors are not well captured by continuous modeling, the second one is that 

differential equations are generally speaking very sensitive to small variations of initial conditions and 

so they are not the best tool to simulate accurately complex enterprise behaviors. This is why we 

choose here a discrete approach to enterprise modeling since it seems both more realistic and more 

accurate in terms of simulation. Note also that, technically, discrete event simulations are also much 

less computational resources consuming than solving differential equations as it makes it possible to 

let the time progress with long jumps rather than with small time intervals. Finally, it is much simpler 

to develop good semantic fundamentals with this approach since classical results [12] can then be 

more easily adapted in such a framework. 
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2.2 WorldLab and  

It is now time to introduce WorldLab and  which are the software tools on which our systemic digital 

twin approach is based. First of all, WorldLab is the name of the software environment that we are 

using for managing systemic digital twins. It can be seen as the equivalent of a software engineering 

workshop for enterprise models instead of software programs. WorldLab indeed allows both to model 

an enterprise, based on the specific  modeling language that we will introduce soon, and to simulate 

immediately – based on a compiling approach—these enterprise models with .  

An overview of the WorldLab architecture is provided by Figure 4. This software platform has two main 

layers: the first is a data layer where natural environment, societal, governance, financial and economic 

data, continuously collected, transformed and organized from public and corporate data sources, are 

available for enterprise modeling & simulating purposes; the second layer specifically offers enterprise 

modeling & simulation capabilities, based on the  modeling language, where enterprise modeling 

specialists can, on one hand, develop enterprise models, reusing & adapting, when relevant, existing 

models, and, on the other hand, simulate these enterprise models in order to compute a number of 

predefined analytic syntheses that can be used to make business decisions. WorldLab shall therefore 

be seen as a tool suite dedicated to build systemic digital twins. At this point, note also that WorldLab 

is based on the same kinds of principles than the 20-year-old AltaRica model-based safety technology 

(see [3] or [9]) from which it inherits both a number of key features and its industrial robustness.   

 

Figure 4 – WorldLab architecture overview 

Note that the data and the models managed and proposed by the WorldLab platform are organized 

according to a standard world model that was initiated through the seminal paper [2]. In this specific 

world model, named according to the CESAM methodology [5] with which it was constructed, the 

world system is decomposed into five main sub-systems: 1) the natural environment formed of all 

natural resources that are involved in human activities, 2) the human population, who – by the way – 

is currently stressed by the covid-19 coronavirus, 3) the economical system formed of all economical 

entities in the world, 4) the governance system formed of all state political & regulatory entities on 

Earth, 5) the financial market that we will not consider as part of the economic system. Each of the 

main subsystems of the CESAM world model can be decomposed according to a standard breakdown 

structure as depicted in the below Figure 5, which provides a useful & relevant classification framework 

for enterprise modeling specialists. If we are limiting the analysis to the main actors which concentrate 

wealth and size, the human society does in particular not appear so complex since there are only 

around 100,000 key actors to take into account in order to capture and understand the world system 
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dynamics! Note also that the main concrete actors (companies, countries, governing bodies, etc.) are 

appearing quite quickly at level 3 or 4 of our system breakdown.  

 

Figure 5 – Structure of the CESAM world model 

The core part of WorldLab is of course the  language which is presented in details in [5]. We shall 

point out here that  is a modeling language especially dedicated to systems dynamics, i.e., to the 

simulation of dynamic evolution of technical and socio-technical systems, with of course a special focus 

on enterprises. Although it involves several concepts borrowed from object-oriented programming 

languages such as C++ or Python, and prototype-oriented programming languages such as JavaScript, 

 differs from these languages in two fundamental respects: 

• first, it is used to design models and not programs: once designed, models can be assessed by 

means of various tools, notably by means of stochastic simulation; 

• second, conversely to programming languages, it embeds the notion of time and distinguishes 

instructions that take no time, and processes that take an explicitly specified time. 

In this last matter,  was also inspired by synchronous languages which are managing sequences of 

data among time [7]. The main difference however comes from the fact that  can manage random 

variables distributed according to explicit probability distributions and also time series associated with 

arbitrary time slots. Note moreover that, eventually, a model in  describes a set of processes running 

in parallel, and modifying data structures that represent the state of the system under study. This last 

property especially allows to model deformable systems whose structure may evolve along time.  

To illustrate how  practically works, one can find in Figure 6, a very simple example of a model in  

where we modelled the world gold ecosystem as the union of Earth, gold corporations and gold users. 

The Earth provides gold resources with an initial value of 50,000 tons of gold according to the current 

estimates. Gold corporations extract gold ore as long as there is gold on Earth and produce gold every 

year, if they have stocks of ore to do so, these two business processes – referred as “activities” in  – 

being operated in parallel within one year duration. Gold consumers buy gold at their own rhythm, 

which increases their stocks of gold, currently amounting to 190,000 tons, but of course they cannot 

buy more than available in producer stocks. Note that the  model provided in the previous figure 

models the annual production of gold and the new demands for gold through normal distributions, via 

the “normalDeviate” operator, having roughly similar distributions, as observed on the market, which 

allowed us to illustrate a typical use of the normal deviation operator.  To be more realistic, we could 

of course introduce dedicated functions to estimate the evolution of gold supply and demand.  
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Figure 6 – Example of a model in  

system GoldEcosystem 
      system Earth … end 
      system GoldCorps … end 
      system GoldUsers … end 
end 
 
system GoldEcosystem.Earth 
      float GoldResources (init = 5*e+4, unit = t); 
end 
 
system GoldEcosystem.GoldCorps 
      float GoldCorpStocks (init = 0, unit = t); 
      float GoldYearlyProduction (init = 0, unit = t); 
      float GoldOreStocks (init = 0, unit = t); 
      float GoldYearlyExtraction (init = 0, unit = t); 
      bool ProducingGold(init = false); 
      bool ExtractingGold(init = false); 
       
     activity ExtractGold 
         trigger: 
             return main.Earth.GoldResources > 0 and ExtractingGold = false; 
         start: {  
             ExtractingGold = true; 
             GoldYearlyExtraction = min(main.Earth.GoldResources, normalDeviate(2000,100)); 
             main.Earth.GoldResources = main.Earth.GoldResources –  GoldYearlyExtraction;  }  
         completion:  
              ExtractingGold = false; 
              GoldOreStocks += GoldYearlyExtraction; 
         duration:  
             return 1; // year 
     end 
    
     activity ProduceGold 
         trigger: 
            return GoldOreStocks > 0 and ProducingGold = false; 
         start: { 
            ProducingGold = true; 
            GoldYearlyProduction = min(GoldOreStocks, normalDeviate(1750, 150)); 
            GoldOreStocks = GoldOreStocks - GoldYearlyProduction; } 
         completion: { 
            ProducingGold = false; 
            GoldCorpStocks += GoldYearlyProduction; 
          } 
         duration: 
            return 1; // year 
     end  
 end  
 
system GoldEcosystem.GoldUsers  
     float GoldUserStocks (init = 1.9*e+5, unit = t); 
     float GoldYearlyNewDemand (unit = t); 
     bool PurchasingGold (init = false); 
       
     activity PurchaseNewGold 
         trigger:  
            return not PurchasingGold and GoldCorpStocks > 0; 
         start: {  
            PurchasingGold = true;  
            GoldYearlyNewDemand = normalDeviate(1800,200); 
            Main.GoldCorpStocks -= min(main.GoldCorpStocks, GoldYearlyNewDemand);   }  
         completion: {  
            PurchasingGold = false; 
            GoldUserStocks += GoldYearlyNewDemand;  
          } 
         duration:  
            return 1; // year 
     end  
 end  
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Note also that a choice had to be made whether the transaction was to be seen from a user point of 

view (purchasing) or a corporate point of view (sales), which both remain equivalent in terms of 

systemic modeling.  

Finally, one can also see here the main difference between programming and modeling: even if  looks 

like a programming language, it is fundamentally different, the main difference coming from a 

pragmatic requirement which does not exist in programming: the key point when designing a model 

in  is indeed to capture reality as well as possible, which is totally specific to modeling and moreover 

cannot be really formalized. Modeling remains therefore still an art … 

2.3 Systemic digital twin management process 

Managing the systemic digital twin of an enterprise with the support of WorldLab and  can be 

achieved through a standard process that we shall now quickly present.  

 

Figure 7 – Overview of the systemic digital twin management process 

This digital twin management process has three main phases, respectively focused on designing, 

developing, and using a systemic digital twin associated with a given enterprise, whose contents are 

sketched here below: 

• Phase 1 – design: this first phase intends to prepare the core foundations on which a systemic 

digital twin shall be built: it starts by clarifying the business problem that the targeted systemic 

digital twin intends to solve, which is key since this initial step will provide the core orientation 

to give to a systemic digital twin; the next steps consist then in identifying the enterprise 

system scope that shall be analyzed through a functional systemic enterprise model, that will 

be later be translated in the  language, when stabilized;  

• Phase 2 – development: the second phase consists then in developing a model using the  

language within the WorldLab platform: one shall here begin by using the material provided 

by the first phase in order to specify the key systemic variables & data that will be manipulated 

in ; in a second step, one shall develop the model in  for the considered enterprise, which 
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form the kernel of the digital twin, before creating the relevant enterprise decision-support 

dashboards & alerts that shall help to solve the initially identified business problem; 

• Phase 3 – use: the last phase is finally a business phase where one shall first create & simulate 

the enterprise evolution scenarios to study, then analyze the simulation results & alerts and 

propose on that basis relevant business recommendations; at the very end, a last step is 

dedicated to installing the systemic digital twin as an operational tool in the organization, 

leading to continuous business improvement through regular evolution scenario creation and 

associated simulations, analyses & alerts, and possibly revisions of the model in .  

A synthetic presentation of this process can also be found in Figure 7. Note finally that the next section 

is eventually dedicated to a step-by-step detailed visit of this process on a case study, which explains 

why we are not eliciting it more in details here.  

3. Designing, developing & using a systemic digital twin in practice 

We shall now show how to design, develop and use in practice a systemic digital twin with WorldLab 

and , through a case study that was constructed by anonymizing and simplifying a real industrial 

company case on which we worked. We indeed wanted here to be both realistic and not too complex, 

in order to remain simple, without being simplistic. In this matter, let us therefore introduce the e-TB 

company which is a high-tech enterprise that produces, at demand for industrial customers within a 

B2B model, electronic toothbrushes which are formed of three logical components, that is to say a 

base, a head and a body, as described in Figure 8. 

e-TB designs each toothbrush depending on the needs of its customers as captured by salespersons, 

sources then amongst pre-selected suppliers the base, head and body components that are answering 

to these needs, and assembles afterwards all these components altogether on its assembly line, before 

delivering the final products to its customers. Since e-TB is highly committed on having a time-to-

delivery delay as short as possible, marketing tries to anticipate the volumes of components that will 

be required per quarter, based on an analysis of market data and real sales & manufacturing data. 

Based on this marketing analysis, anticipated base, head and body components are then bought in 

advance and stored within e-TB warehouses. This policy makes components available, with only a 1-

day delay, when a customer request has to be fulfilled.  

 

 

Figure 8 – Logical structure of the electronic toothbrushes produced by e-TB 

However, this strategy may fail when marketing anticipations are not accurate. In this situation, there 

are then uncompressible delays for producing from scratch the missing specific components that are 

answering to the actual customer needs, since they were not stored. In such context, the associated 

sourcing delays – including storing – per component are provided in the table below.  
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Component Sourcing & storing delay 

Base 2 months 

Head 1 month 

Body 1 month 

Figure 9 - Sourcing & storing delays per component when one has to produce them from scratch 

These elements of context being recalled, let us now see how an associated systemic digital twin can 

be designed, developed, and used to support e-TB time-to-delivery optimization strategy.  

3.1 Phase 1: designing the systemic digital twin 

The very first phase towards a systemic digital twin for e-TB is the design phase. Its purpose is to scope 

the future e-TB systemic digital twin by constructing a first informal model of e-TB, which shall be 

challenged & validated before going to the next  modeling phase. The key point to have in mind is 

that it is not possible to go to the formal modeling phase before having stabilized our understanding 

of e-TB, which may take some time due to the many interactions and feedbacks that one needs to do 

with and to capture from e-TB actors. Since the e-TB model will fundamentally be unstable during this 

phase, we are thus using here informal modeling tools which are well adapted to this situation.  

Step 1.1: clarifying the business problem to solve  

The starting point of our process consists in clarifying the business problem that e-TB wants to solve. 

One shall indeed never construct a systemic digital twin for the pleasure of constructing a systemic 

digital twin: it shall always answer to a specific business problem whose business specificities shall 

normally highly guide the design of the systemic digital twin. 

In our case, it happens that e-TB is a time-to-delivery oriented company as already stated. However, 

we could see in the introduction of this section that the way e-TB is organized in order to achieve the 

best possible time-to-delivery of its products is not optimal since delivery time can just be very bad, 

up to 2 months of delay, when marketing anticipations are not accurate, resulting in the lack of some 

key components in e-TB warehouses that may however be mandatory in order to answer to some 

specific customer needs. Moreover, the e-TB time-to-delivery policy has also a bad side effect: e-TB is 

indeed obliged to overstore the components in its warehouses in order to increase the probability of 

finding there the right components when a given customer requires them, knowing experimentally 

that component figures anticipated by the marketing are wrong. In other words, e-TB buys delivery 

time with storing space. But this policy unfortunately results in lots of overstored electronic toothbrush 

components at the end of each year. e-TB must then regularly destroy them since they are quickly not 

anymore adapted to the market which evolves at a very rapid pace in the e-TB high tech business. The 

cost of such over storage, mainly due to the difficulty of having accurate marketing predictions, is quite 

high and reaches more than 10 million euros per year, which are just lost each year by e-TB. It is thus 

quite key to find the best possible balance between time-to-delivery and levels of warehouse stocks.  

Consequently, we can see that the business problem that e-TB has to solve is to find the best way of 

working that will allow the company to minimize both the customer delivery time and the component 

storage volume of its electronic toothbrushes. We were therefore able to express the business problem 

of e-TB in terms of an optimization problem, which clarifies it quite well.  

Step 1.2: identifying the enterprise system scope  

The second step of the design phase consists in creating a system vision of the e-TB company. The 

associated deliverable shall thus be a system logical interaction diagram for the considered enterprise, 
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i.e., a diagram describing both the system / logical breakdown of the perimeter of e-TB which matters 

for the problem that we want to solve as identified in step 1.1, the associated relevant stakeholders, 

and the internal & external exchanges that they are managing. The resulting typical deliverable is 

presented in Figure 10 for the e-TB case study. 

 
Figure 10 – System logical interaction diagram for e-TB company 

This deliverable is obtained by identifying first the main organizational parts of the e-TB company that 

have to deal with the time-to-delivery and storage optimization problem that we have to address. The 

first obvious such parts can be easily obtained by analyzing the e-TB customer to customer end-to-end 

delivery process: this process starts with a sales part where the sales division of e-TB captures the 

customer needs, as stated by the customer. Then, it transforms these needs into toothbrush initial 

requirements. The latter may however not be totally complete/satisfactory from a technical point of 

view. The process then goes on by a design part where a product designer from the e-TB design division 

analyses the toothbrush initial requirements and defines the toothbrush final technical requirements, 

taking especially into account the current availability of components. This may lead to replacing 

ordered components by similar components, leading then both to component requests to the sourcing 

& storing division of e-TB and to toothbrush production requests to the e-TB manufacturing & delivery 

division. The latter will eventually deliver the expected electronic toothbrushes to the customer.  

To complete the analysis, one has of course to integrate in the picture the marketing division of e-TB 

which plays a key role since it shall send each quarter anticipated component volumes to the sourcing 

& storing division of e-TB, based initially on market data at the beginning of each year and updated 

each quarter based on the actual sales, design & manufacturing data. Note also that one shall not 

forget the external stakeholders, here customers, market and suppliers, with which e-TB has external 

exchanges. In this matter, the new exchanges that one must add to complete the picture are just the 

exchanges – of component requests & components – that the sourcing & storing division of e-TB has 

with its suppliers and that we did not trace up to now (see Figure 10 for the final deliverable).  

Step 1.3: constructing a functional systemic enterprise model  

The next and last step of the design phase consists in enriching the enterprise vision that was captured 

in the previous step with a functional point of view. In other words, it consists in refining the previous 
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analysis by identifying all the business processes associated with the various e-TB divisions, that are 

relevant with respect to the business problem that we want to address here. The associated typical 

deliverable is illustrated in Figure 11 for the e-TB case. 

 

Figure 11 – Functional systemic model of e-TB aligned with its system breakdown 

As one sees, we just completed the system logical interaction diagram obtained in step 1.2 by eliciting 

the underlying business processes. In our case, most of the e-TB divisions that matter are only involved 

through one single business process: “anticipate market needs” for the marketing division, “sell 

toothbrushes” for the sales division, “design toothbrushes” for the design division and “assemble & 

deliver toothbrushes” for the manufacturing & delivering division. In this last matter, note that we 

grouped together the “assemble toothbrushes” and “deliver toothbrushes” business processes since 

the deliver process – which is quite efficient and stable in the e-TB case—has practically no impact at 

all, both on the time-to-delivery durations and on the storage volumes. Finally, we were naturally led 

to introduce six business processes within the sourcing & storing division of e-TB: on a first hand, 

“source & store heads”, “source & store bodies” and “source & store bases” since these processes are 

of course independent and, as so, each of them can have a different & potentially huge impact on the 

two key performance indicators – time-to-delivery and storage volume—of interest and, on a second 

hand, the associated destocking processes, i.e. “destock heads” “destock bodies” and “destock bases”. 

At this point, we now have a complete vision from an overall system perspective – even if still quite 

informal – of the key e-TB architectural static elements, both in terms of stakeholders, main internal 

enterprise divisions, internal & external exchange flows and business processes, with respect to the 

time-to-delivery and component storage volume optimization problem that we shall address.  

3.2 Phase 2: developing the systemic digital twin 

The second phase consists in developing the systemic digital twin of e-TB using WorldLab and . This 

core phase is the most technical since one has here to manage both the variables & data, the formal 

model and the decision-support dashboards & alerts that are the key constituents of the e-TB systemic 

digital twin. Note that one may need to come regularly back to this phase for managing evolutions or 

adaptations of the e-TB systemic digital twin in a continuous improvement business perspective.  
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Step 2.1: specifying enterprise systemic variables, data and activities 

In this second development phase, the very first step is dedicated to the identification & calibration of 

all variables & data that will be managed by the e-TB systemic digital twin. We need in particular first 

to understand more in details the exchanged variables that appeared—and were abstracted—in the 

functional systemic enterprise model defined in the last previous step.  

 

Figure 12 – Annual e-TB electronic toothbrush sales per rotating performance  

Let us start therefore by looking more precisely on the electronic toothbrushes that are manufactured, 

as a main mission, by e-TB, since all the flows exchanged between the various e-TB business processes 

identified in step 1.3 are dependent of the nature of the produced electronic toothbrushes. In this last 

matter, it happens that e-TB is in fact producing two different types of electronic toothbrushes, the 

low-cost ones and the premium ones, that one can in particular technically differentiate through the 

range of their rotating speeds, which have their own independent business dynamics. One can indeed 

see from the annual sales statistics of e-TB (see Figure 12) that the sales distributions of low-cost and 

premium products per rotating speed are quite different, the first following a normal truncated law 

when the second has a usual normal distribution. Consequently, we must introduce specific variables 

that are taking into account this situation. As an example, one can typically see that the total amount 

of electronic toothbrushes produced by e-TB per unit of time is not a good systemic variable, since it 

abstracts too much the reality of the e-TB business, even if it is a good performance indicator for e-TB: 

this variable is indeed the sum of the two similar variables, respectively associated with low-cost and 

premium products, which are therefore the relevant systemic variables to consider. Note also that one 

will have to introduce in the same way specific variables for describing the components that are 

specifically used, either for low-cost, or premium electronic toothbrush construction.  

One can now pass to the identification of the systemic variables associated with e-TB. In this matter, 

one has to review the main systems involved in the e-TB ecosystem – which groups both the market, 

the customers and all types of suppliers – and the marketing, sales, design, sourcing & storing and 

manufacturing & delivering divisions of e-TB, as synthetized in phase 1, in order to define the relevant 

systemic variables associated to these various ecosystem & enterprise systems. The result of this 

systemic variable review for e-TB is provided in the below table (see Figure 13).  

The next step will then be to identify, when relevant, the initial values of these systemic variables and 

the data sources from which they can be taken, again when relevant. Here most of the e-TB systemic 

variables are triggered by customer demands that are not fixed: they shall then have a zero initial value 

which means that we shall only consider and measure them from the start of the systemic digital twin 

simulation process. The other variables that may be initialized in a different way are the quarterly 

anticipated electronic toothbrushes and the number of stored components, that we shall put to the 

initial values of these variables at the date chosen as the reference starting date of the systemic digital 
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twin life. In terms of data sources, one has of course to know where one can find these data in order 

to be able to compare and to regularly reconciliate their estimated and actual values.   

 

System Systemic variable 

Customers Low-cost ordered toothbrushes 
Premium ordered toothbrushes 

Marketing Low-cost quarterly anticipated toothbrushes 
Premium quarterly anticipated toothbrushes 

Sales Low-cost sold toothbrushes 
Premium sold toothbrushes 

Design Low-cost designed toothbrushes 
Premium designed toothbrushes 

Sourcing & storing Low-cost stored body components 
Premium stored body components 
Low-cost stored head components 
Premium stored head components 
Low-cost stored base components 
Premium stored base components 

Manufacturing & delivering Low-cost manufactured toothbrushes 
Premium manufactured toothbrushes 

Figure 13 – Systemic variables associated with all systems involved in e-TB company ecosystem 

Systemic variables can be seen as stocks. Each actor owns a number of stocks. For instance, the sub-

system Customers owns two stocks of ordered toothbrushes (one for low-cost, the other one for 

premium toothbrushes), the sub-system Marketing owns a stock of low-cost quarterly anticipated 

toothbrushes and so on. The notion of stocks should thus be taken here in a broad sense, i.e. quantities 

of interest for the business processes under study. 

Activities of the various actors modify these stocks. In order words, they describe flows between 

stocks. For instance, the activity “sell toothbrushes” of the sub-system Sales increases its stocks of sold 

low-cost and premium toothbrushes, accordingly to the increasing of the stocks of ordered low-cost 

and premium toothbrushes of the sub-system Customers: in other words, it is synchronized with the 

activity “buy toothbrushes” of the sub-system Customers that we may also introduce. 

At this point, several remarks should be made. 

First, some activities are constrained by the availability of material or organizational resources. For 

instance, the production capacity of the provider(s) of toothbrush components may be limited. Such 

quantities are not variables stricto sensu as their values do not change during a given simulation (but 

may change from one simulation to the other). Rather, they are parameters. These parameters are 

specifically monitored as so, both in  and at WorldLab platform level. 

Second, the result of activities may not be fixed, but rather vary according to some statistical 

distribution. For instance, the quantity of low-cost and premium toothbrushes sold every day by the 

Sales department may vary depending on the season or within the month. In , there are two ways to 

describe such distributions: either by means of built-ins encoding of some widely used distributions 

such as – for instance – the normal, exponential, or Weibull distributions, or by means of externally 

defined distributions, so-called empirical distributions, concretely given in external files as set of 

points. Empirical distributions provide a direct link with field data. 

Third, as already pointed out, activities of the various actors are performed in parallel, possibly at 

different paces. Each activity has thus its own duration. Consequently, one shall not forget to elicit the 

time features of each e-TB ecosystem business process (see the table of Figure 14 for the results in the 
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e-TB case of this last activity). Note that no duration values are provided for the “buy toothbrushes” 

process since we do not have insight on it. However, it is not so important since each “buy” process of 

the customers will be synchronized with the associated “sell” process at e-TB level, which of course 

has also to be captured in . As for results of activities, durations can be either deterministic or obey 

some statistical distribution. 

 
Business process Duration delay Duration unit 

Buy toothbrushes Non available Non available 

Anticipate market needs 1  quarter 

Sell toothbrushes normal-deviate(10,5)  day 

Design toothbrushes normal-deviate(5,2)  day 

Assemble & deliver toothbrushes 5 day 

Source & store heads 1  month 

Destore heads 1 day 

Source & store bodies 1 month 

Destore bodies 1  day 

Source & store bases 2  month 

Destore bases 1  day 

Figure 14 – Durations of e-TB ecosystem business processes 

Fourth, each activity is started when, or more exactly as soon as, a certain condition on stocks is 

verified. This for two reasons: first, there may be not enough available resources, or on the contrary 

too many products, to start an activity. For instance, there is no need for the Marketing to buy new 

toothbrushes components if the stocks are filled enough. Second, once an activity started, it is in 

general not possible to start a new instance of the same activity until the activity is not completed. The 

actor can be seen here as the resource that is required to perform the activity. Describing the triggering 

condition of each activity is thus an important part of the modeling process. 

Fifth, given what we just said, activities modify the state of the system – i.e. in a first approximation 

the values of stocks – twice: when they are started, to mobilize the resources they need to be 

performed and at their completion, as the result of their execution.  

The description of stocks and activities, and for activities their triggering conditions, actions at start 

and at completion, and durations, is the process by which the informal model is transformed into a 

formal one. Once this description is achieved, writing down the  model becomes, to some extent, 

“just a matter of technique”. This is not completely true however as the process by which both the 

informal and the formal models are designed are iterative and may depend on performance issues of 

assessment tools. For instance, it may be tempting to iterate an activity 24 times a day for the sake of 

accuracy, but in practice it may be better to consider it as a single daily activity. Moreover,  is a full-

fledged prototype- and object-oriented language. Consequently, it provides elegant and efficient ways 

of representing concepts, which ease the authoring and the maintenance of systemic models. It is thus 

often the case that the  model is not a bare encoding of the informal model. Rather, it helps to 

structure further the analysis and to capture commonalities within the informal model and with 

previously developed models. In a word, the translation of the informal model into a formal one leads 

often to refining the informal model. 

Step 2.2: developing the model in  

We now have everything in hands for constructing the model for e-TB in . The skeleton of such a 

formal model can be first quite obviously derived from the informal model elaborated during the first 

phase and from the various elements defined in the previous step 2.1. The beginning of the skeleton 
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of the e-TB formal model in  is provided in Figure 15. At this stage, it is just – as one can see here – a 

syntactic translation in the  language of the modeling material that we obtained so far, activities 

excluded. The objective of this first phase is to allocate systemic variables (stocks) to sub-systems and 

to check that the overall architecture of the system has been correctly captured. 

system eTBEcosystem  
    system Customers ... end  
    system Sales ... end  
    system Design ... end  
    system SourcingStoring ... end 
    system ManufacturingDelivering ... end  
    system Marketing ... end  
end  
 
system eTBEcosystem.Customers  
     int lowCostOrderedToothbrushes(init = 0); 
     int premiumOrderedoothbrushes(init = 0); 
end 
 
system eTBEcosystem.Sales 
     int lowCostSoldToothbrushes(init = 0); 
     int premiumSoldToothbrushes(init = 0); 
end     
 … 

 

Figure 15 – Skeleton of the e-TB model in  

We are now ready to develop the full model in  of our enterprise. In the e-TB case, this shall lead us 

to develop formal descriptions of the behaviors of each part of the e-TB ecosystem, as defined in the 

very first breakdown assertion of the model in  (see Figure 15). As an illustration, Figure 16 shows the 

full description of the sub-system Sales and its activity “SellToothbrushes”. 

system eTBEcosystem.Sales 
     int lowCostSoldToothbrushes(init = 0); 
     int premiumSoldToothbrushes(init = 0); 
     bool selling(init = false); 
     parameter float meanSaleDuration = 10; 
     parameter float stddevSaleDuration = 5; 
 
     activity SellToothBrushes 
         trigger: return not selling; 
         start: selling = true; 
         completion: { 
 int lowCostVolume, premiumVolume; 
 lowCostVolume = empiricalDistribution(“Data/LowCostToothBrushesSalesData.csv”, linear); 
 premiumVolume = empiricalDistribution(“Data/PremiumToothBrushesSalesData.csv”, linear); 
 main.Customers.lowCostOrderedToothbrushes += lowCostVolume; 
 main.Customers.premiumOrderedoothbrushes += premiumVolume; 
 lowCostSoldToothbrushes += lowCostVolume; 
 premiumSoldToothbrushes += premiumVolume; 
 selling = false; 
 } 
         duration: min(1, normalDeviate(meanSaleDuration, stddevSaleDuration)); // days 
     end     
end 

Figure 16 – Full description of the sub-system Sales in  

This model fragment intends here to capture the buy-sales relationships within e-TB ecosystem. One 

can in particular observe that it refers to two empirical distributions and one pair (meanSaleDuration, 

stddevSaleDuration) of parameters. The empirical distributions, which are loaded from .csv files, 

describe the volumes of low-cost and premium toothbrush sold over the time. These two datasets are 
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typically obtained by experience feedback, possibly corrected by business expert judgement. The two 

parameters (meanSaleDuration, stddevSaleDuration) are used as inputs for a given normal distribution 

modeling the duration of the sale process. They can be modified prior to each simulation, so to study 

the impact of variations in the duration of the sale process. One can finally note that Boolean variables 

are introduced as triggering conditions of every activity in order to ensure that there cannot be two of 

the same activity occurring at the same time. 

Note that developing the models in  is not an easy task. The  language is indeed highly constrained 

in order to oblige the modeling expert to think in the right systemic way. Moreover, it is usually when 

one arrives at this step that one will discover lots of gaps and missing items in the previous analyses, 

which shall be seen as a key benefit of our formal approach.  does indeed not allow neither ambiguity, 

nor approximations. Consequently, feedbacks of this new step on all the previous steps of the systemic 

digital twin construction process are just normal. They shall be always welcomed by all the modeling 

actors since they are key for constructing a robust systemic model.  

Step 2.3: defining decision-support dashboards 

Finally, the third and last step of the development of the systemic digital twin of e-TB using WorldLab 

and  consists in defining – through a dedicated WorldLab interface – the decision-support dashboards 

and alerts that will synthesize / manage the results of the simulations of our systemic digital twin.  

In the e-TB case, the key performance indicators that we are interested in are the monthly distributions 

of stored component volumes per type of components and time-to-delivery durations per type of 

toothbrushes. Examples of possible associated decision-support dashboards are provided in the below 

Figure 17. Note that the time-to-delivery is measured on the right-hand side diagram in a relative way: 

e-TB indeed commits always on a given time-to-delivery with its customers during the sales phase, 

which leads the company to measure the difference between the actual and the committed time-to-

delivery, which can be negative when e-TB is in advance or positive when e-TB is late, corresponding 

to two dynamics with respect to time-to-delivery expressed in the two curves of our diagram. 

          

Figure 17 – Examples of decision-support dashboard for e-TB 

Note finally that such decision-support dashboards are of course computed through simulations of the 

previous model developed in , where one needs therefore to put specific measurement instructions 

for describing the measures to do during a simulation in order to feed these dashboards. Similar way 

of working may also be done with respect to alerts that the systemic digital twin may manage. 
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3.3 Phase 3: using the systemic digital twin 

Finally, the third and last phase towards a systemic digital twin for e-TB is the use phase. We are here 

coming back to the business in order to help e-TB managers to take the right decisions, based on the 

analyses of the e-TB evolution scenarios provided by the systemic digital twin simulations, in order to 

solve the business problem identified at the very beginning of the process. This phase ends by installing 

the e-TB systemic digital twin as a standard operational tool within the organization that shall support 

continuous improvement of the enterprise on the initial business problem scope.  

Step 3.1: creating & simulating enterprise evolution scenarios  

The point is now to begin to use the systemic digital twin that we just constructed in order to solve the 

initial business problem and to improve the business operations. In the e-TB case, we know that the 

core problem to solve is to anticipate better the volumes of each body, head and base component 

involved in the manufacturing of an electronic toothbrush. This is why e-TB has to start by simulating 

the quarterly volumes of each component of its electronic toothbrushes. Such simulations are then 

managed by instantiating the free parameters of the e-TB  model to different values, leading to 

different simulation scenarios. One can typically simulate in this way the consequences of various 

potential behaviours of the electronic toothbrush market for the e-TB company.  

 

Figure 18 – Simulated quarterly sold volumes of an e-TB electronic toothbrush component  

Figure 18 shows the result of such a simulation for the sold volumes of an e-TB electronic toothbrush 

component during the first quarter of a year, here expressed in percent of the total yearly amount of 

sold components, classified per increasing technical performance of the considered component, under 

the assumption of a normal market behavior. We also indicated on that figure the normal distribution 

that approximates the obtained simulation results. 

Step 3.2: analyzing simulation results 

The second step of the use phase consists in business analyses of the simulation results obtained in 

the previous step. The systemic digital twin only plays here a supporting role since this new step is 

fundamentally a business step which cannot be magically managed by a pure tooling approach. To 

understand better this point, one may have a look on the below Figure 19 which illustrates a typical 

business analysis that can be done on the basis of the simulation results provided by the last step, as 

synthesized by Figure 18 in the e-TB case.  

One can indeed see that when one clusters the considered components according to the clusters that 

are highlighted in red in the left-hand side figure of Figure 18, the distribution of the clusters that one 

obtains in this way are perfectly captured by a normal distribution. This observation may for instance 

suggest rationalizing the e-TB component portfolio by choosing a reference component in each 

identified cluster that will replace all existing components of a given cluster, leading for instance here 
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to 3 reference components in the example of Figure 19. Such a choice would indeed allow to cover the 

market – which is driven by the component performance, used here as the core analysis axis – with 

only 3 components instead of 6, which is a lever for both reducing the cost of these components since 

having less components allows to get bigger volumes and lower prices from the component suppliers 

and complexity of the corresponding component portfolio which would here be divided by 2.  

 

Figure 19 – Possible rationalization of the analyzed electronic toothbrush component  

As one can see, such an analysis is clearly a business analysis where the systemic digital twin “just” 

provides the material to support such an analysis.  

Step 3.3: managing continuous business improvement  

Last, but not least, one may now integrate the systemic digital twin in the usual operational activities 

of the e-TB company. In such a case, it means that one shall use the systemic digital twin to define the 

best storage and time-to-delivery strategies and to monitor such strategies among time, in order to 

achieve optimal stored component volumes and electronic toothbrush time-to-delivery. The below 

Figure 20 shows for instance the comparison between the simulated (in red) and the actual (in green) 

monthly sold volumes of an e-TB electronic toothbrush component among time. The relatively good 

accuracy between estimation & reality – which is key to optimally manage the stocks of this component 

– is of course obtained through a regular re-calibration of the systemic digital twin among time.  

 

Figure 20 – Comparison of simulated & actual monthly sold volumes of an e-TB electronic toothbrush component  

One shall thus not think that a systemic digital twin is a frozen tool. Any company is indeed a living 

body which permanently adapts, changes and transforms itself, in order to maintain its alignment with 

its business environment which evolves at its own independent pace. It is therefore key to integrate 

over time these evolutions within the systemic digital twin that was constructed in order to support 

continuous business improvements within the company where it was deployed. It is only through such 
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an intimate and long-term integration between the real business operations and the systemic digital 

twin that such a tool will provide the expected business value along time. 

4. Conclusion 

In this short paper, we tried to present the motivations and the main features of our systemic digital 

twin approach, especially focusing on the design, development and use processes of such a tool, which 

are usually never highlighted in the literature. As one could see, our approach is based on a formal 

modeling language –  – in the line of the classical AltaRica language for safety (see [3] and [9]). We 

believe that this core choice brings fundamental benefits to the companies that use our approach, 

both in terms of accuracy & correctness of their systemic digital twins, hence of business validity, and 

ease of evolution & maintenance, hence of associated operating recurring costs.  

There are of course many specific aspects of the proposed approach that require further detail and 

elaboration. We would finally like to stress the very crucial importance of systems architecture when 

constructing a systemic digital twin since this discipline enables the smooth integration of the various 

disciplines that are all providing a piece of the complex puzzle of a given enterprise reality.  

References 
 

1. Blanchard B.S., Fabricky W.J., Systems Engineering and Analysis, Prentice Hall, 1998 

2. De Weck O., Krob D., Li L., Lui P.C., Rauzy A., Zhang X.G., Handling the COVID-19 crisis: Toward an 

agile model-based systems approach, Systems Engineering, Vol. 23, Issue 5, 656-670, 2020 

3. Hastings C., Rauzy A., Foundations for Model-Based Systems Engineering and Model-Based Safety 

Assessment, Systems Engineering, Vol. 22, Issue 2, 146–155, 2019 

4. Kossiakoff A., Sweet W.N., Systems Engineering – Principles and Practice, Wiley Series in Systems 

Engineering, 2003 

5. Krob D., Model-Based Systems Architecting – Using CESAM to architect complex systems, ISTE and 

Wiley, 2022 

6. Krob D., Rauzy A., A Guided Tour of the Systemic Modeling Language , White Paper, Systemic 

Intelligence Group, 2022 

7. Marwedel P., Embedded System Design, Kluwer Academic Publishers, 2003 

8. Negri E., A review of the roles of Digital Twin in CPS-based production systems, Procedia 

Manufacturing, 11, 939–948, 2017 

9. Prosvirnova T., Batteux B., Brameret P.-A., Cherfi A., Friedlhuber T., Roussel J.-M., Rauzy A., The 

AltaRica 3.0 project for Model-Based Safety Assessment, In Proceedings of 4th IFAC Workshop on 

Dependable Control of Discrete Systems, DCDS'2013, York, Great Britain, 127–132, 2013 

10. Sage A.P., Armstrong J.E., Introduction to systems engineering, Wiley Series in Systems 

Engineering, 2000 

11. Sterman J.D., Business Dynamics – Systems Thinking and Modeling for a Complex World, Irwin 

McGraw-Hill, 2000 

12. Winskel G., The formal semantics of programming languages – An introduction, The MIT Press, 

1997 


